Решебник по алгебре 8 класс Макарычев ФГОС Задание 221

Авторы:
Год:2021
Тип:учебник

Задание 221

Выбери издание
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
 
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение

\[\boxed{\text{221\ (221).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Издание 2
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{221.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]

Пояснение.

Сначала выполним замену: вместо x подставим kx, вместо y – ky. Упростим полученную дробь.

Вынесем за скобки общий множитель в числителе и знаменателе.

Свойство степеней:

\[\left( \text{ab} \right)^{n} = a^{n}b^{n}.\]

Решение.

\[\frac{x^{2} - 2y^{2}}{3y^{2} + 5xy}\ при\ x = kx,\ y = ky:\]

\[\frac{\left( \text{kx} \right)^{2} - 2\left( \text{ky} \right)^{2}}{3\left( \text{ky} \right)^{2} + 5kx \cdot ky} =\]

\[= \frac{k^{2}x^{2} - 2k^{2}y^{2}}{3k^{2}y^{2} + 5k^{2}\text{xy}} =\]

\[Что\ и\ требовалось\ доказать.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам