\[\boxed{\text{214\ (214).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{б)}\ \frac{\left( a^{2} - 9 \right)^{2}}{(3 - a)^{3}} =\]
\[= \frac{\left( (a - 3)(a + 3) \right)^{2}}{(3 - a)^{3}} =\]
\[= \frac{(a - 3)^{2} \cdot (a + 3)^{2}}{(3 - a)^{3}} =\]
\[\textbf{в)}\ \frac{8y^{3} - 1}{y - 4y^{3}} =\]
\[= \frac{(2y - 1)\left( 4y^{2} + 2y + 1 \right)}{y\left( 1 - 4y^{2} \right)} =\]
\[= \frac{(2y - 1)\left( 4y^{2} + 2y + 1 \right)}{y(1 - 2y)(1 + 2y)} =\]
\[= - \frac{4y^{2} + 2y + 1}{y(1 + 2y)}\]
\[\textbf{г)}\ \frac{5a^{2} - 3ab}{a^{2} - 0,36b^{2}} = \frac{a(5a - 3b)}{a^{2} - 0,36b^{2}} =\]
\[= \frac{5a}{a + 0,6b}\ \]
\[\boxed{\text{214.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \frac{3x - 28}{25}\]
\[x \in R.\]
\[\textbf{б)}\ \frac{37}{2y + 7}\]
\[2y + 7 \neq 0\]
\[2y \neq - 7\]
\[y \neq - 3,5.\]
\[\textbf{в)}\ \frac{9}{x^{2} - 7x}\]
\[x^{2} - 7x \neq 0\]
\[x(x - 7) \neq 0\]
\[x \neq 0\]
\[x \neq 7.\]
\[\textbf{г)}\ \frac{2y + 5}{y^{2} + 8}\]
\[y^{2} + 8 \neq 0\]
\[y^{2} \neq - 8\]
\[y \in R.\]
\[\textbf{д)}\ \frac{12}{|x| - 3}\]
\[|x| - 3 \neq 0\]
\[|x| \neq 3\]
\[x \neq \pm 3.\]
\[\textbf{е)}\ \frac{45}{|y| + 2}\]
\[|y| + 2 \neq 0\]
\[y \in R.\]