\[\boxed{\text{157\ (157).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[a^{2} - 2a + 37 =\]
\[= a^{2} - 2a + 1 + 36 =\]
\[= (a - 1)^{2} + 36\]
\[(a - 1)^{2} \geq 0 - всегда\ \]
\[положительно,\ поэтому\ \]
\[(a - 1)^{2} + 36 > 0.\]
\[(a - 1)^{2} + 36 - принимает\ \]
\[наименьшее\ значение\ \]
\[при\ a = 1.\]
\[Ответ:при\ a = 1.\]
\[\boxed{\text{157.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
Пояснение.
Порядок действий в сложных примерах:
сначала выполняем действия в скобках;
потом слева направо умножение и деление;
затем слева направо сложение и вычитание.
Дроби с разным знаменателем приводим к общему знаменателю.
Чтобы разделить одну дробь на другую, нужно первую дробь умножить на дробь, обратную второй:
\[\frac{a}{b}\ :\frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}.\]
Вспомним формулы сокращения:
\[a^{2} - b^{2} = (a - b)(a + b);\]
\[a^{2} + 2ab + b^{2} = (a + b)^{2};\]
\[a^{2} - 2ab + b^{2} = (a - b)^{2}.\]
Решение.