\[\boxed{\text{1330.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[\textbf{а)}\ \left\{ \begin{matrix} 2x^{2} - xy = y^{2} + 5 \\ x^{2} - xy = y^{2} + 1\ \ \\ \end{matrix} \right.\ ( - )\]
\[x^{2} = 4\]
\[x = \pm 2.\]
\[1)\ x = 2:\]
\[x^{2} - xy = y^{2} + 1\]
\[4 - 2y = y^{2} + 1\]
\[y^{2} + 2y - 3 = 0\]
\[y_{1} + y_{2} = - 2;\ \ y_{1} \cdot y_{2} = - 3\]
\[y_{1} = - 3;\ \ y_{2} = 1.\]
\[2)\ x = - 2:\]
\[x^{2} - xy = y^{2} + 1\]
\[4 + 2y = y^{2} + 1\]
\[y^{2} - 2y - 3 = 0\]
\[D_{1} = 1 + 3 = 4\]
\[y_{1} = 1 + 2 = 3;\ \ \]
\[y_{2} = 1 - 2 = - 1.\]
\[Ответ:(2; - 3);(2;1);( - 2;3);\]
\[( - 2; - 1).\]
\[\textbf{б)}\ \left\{ \begin{matrix} 3x^{2} - 2y^{2} = 2xy - 1 \\ 2x^{2} - y^{2} = 2xy - 1\ \ \\ \end{matrix} \right.\ ( - )\]
\[x^{2} - y^{2} = 0\]
\[(x - y)(x + y) = 0\]
\[x = y;\ \ x = - y.\]
\[2)\ x = y:\]
\[2x^{2} - y^{2} = 2xy - 1\]
\[2y^{2} - y^{2} = 2y^{2} - 1\]
\[y^{2} = 1\]
\[y = \pm 1.\]
\[x = \pm 1.\]
\[2)\ x = - y:\]
\[2x^{2} - y^{2} = 2xy - 1\]
\[2y^{2} - y^{2} = - 2y^{2} - 1\]
\[3y^{2} = - 1\]
\[нет\ решений.\]
\[Ответ:( - 1; - 1);\ \ (1;1).\]