\[\boxed{\text{1308.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[\left\{ \begin{matrix} a + c = 2b\ \ \ \ \ \ \ \ \\ 2bd = c(b + d) \\ \end{matrix} \right.\ ,\ \ b \neq 0,\]
\[\ \ d \neq 0\]
\[(1)\frac{a}{b} = \frac{c}{d} - доказать.\]
\[\left\{ \begin{matrix} a = 2b - c \\ c = \frac{2bd}{b + d}\text{\ \ } \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[Подставим\ в\ (1).\]
\[\frac{2b - c}{b} = \frac{\frac{2bd}{b + d}}{d}\]
\[\frac{2b - c}{b} = \frac{2bd}{d(b + d)}\]
\[\frac{2b - c}{b} = \frac{2b}{b + d}\]
\[(2b - c)(b + d) = 2b^{2}\]
\[2b^{2} + 2bd - cb - cd = 2b^{2}\]
\[2bd - cb - cd = 0\]
\(2bd - c(b + d) = 0\)
\[2bd = c(b + d) \Longrightarrow ч.т.д.\]