Решебник по алгебре 8 класс Макарычев ФГОС Задание 1188

Авторы:
Год:2021
Тип:учебник

Задание 1188

\[\boxed{\text{1188.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]

\[\textbf{а)}\ a^{- 2} + b^{- 2} = \frac{1}{a^{2}} + \frac{1}{b^{2}} =\]

\[= \frac{b^{2} + a^{2}}{a^{2}b^{2}}\]

\[\textbf{б)}\ xy^{- 1} + xy^{- 2} = \frac{x}{y} + \frac{x}{y^{2}} =\]

\[= \frac{\text{xy} + x}{y^{2}}\]

\[\textbf{в)}\ \left( a + b^{- 1} \right)\left( a^{- 1} - b \right) =\]

\[= \left( a + \frac{1}{b} \right)\left( \frac{1}{a} - b \right) = \frac{a}{a} - ab +\]

\[+ \frac{1}{\text{ab}} - \frac{b}{b} =\]

\[= 1 - ab + \frac{1}{\text{ab}} - 1 = \frac{- a^{2}b^{2} + 1}{\text{ab}}\]

\[\textbf{г)}\ \left( x - 2y^{- 1} \right)\left( x^{- 1} + 2y \right) =\]

\[= \left( x - \frac{2}{y} \right)\left( \frac{1}{x} + 2y \right) =\]

\[= \frac{xy - 2}{y} \cdot \frac{1 + 2xy}{x} =\]

\[= \frac{(xy - 2)(1 + 2xy)}{\text{xy}}\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам