\[\boxed{\text{1126\ (1126).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство.
Теорема Виета. Для квадратного уравнения вида \(\mathbf{a}\mathbf{x}^{\mathbf{2}}\mathbf{+ bx + c = 0}\), где a, b и c – любые числа и a ≠ 0:
\[\mathbf{x}_{\mathbf{1}}\mathbf{+}\mathbf{x}_{\mathbf{2}}\mathbf{= -}\frac{\mathbf{b}}{\mathbf{a}}\mathbf{;}\]
\[\mathbf{x}_{\mathbf{1}}\mathbf{\bullet \ }\mathbf{x}_{\mathbf{2}}\mathbf{=}\frac{\mathbf{c}}{\mathbf{a}}\mathbf{.}\]
При решении используем следующее:
1. Формулу квадрата суммы:
Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого и второго выражений плюс квадрат второго выражения:
\[\mathbf{(}\mathbf{a}\mathbf{+}\mathbf{b}\mathbf{)}^{\mathbf{2}}\mathbf{=}\mathbf{a}^{\mathbf{2}}\mathbf{+}\mathbf{2}\mathbf{\text{ab}}\mathbf{+}\mathbf{b}^{\mathbf{2}}\mathbf{.}\]
2. При возведении отрицательного числа в степень (степень говорит нам о том, сколько раз следует умножить число «a» само на себя. Например, 34=3*3*3*3=81) с чётным показателем (число, которое делится на 2 без остатка) получается положительное число:
\[\mathbf{(}\mathbf{- 3)}^{\mathbf{4}}\mathbf{= 81.}\]
3. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному.
Решение.
\[( - p)^{2} - 2 = 254\]
\[p^{2} = 256\]
\[p = \sqrt{256}\]
\[p = \pm 16\]
\[Ответ:\ p = \pm 16.\]
\[\boxed{\text{1126.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[Верные\ высказывания:\]
\[2);3).\]