Решебник по алгебре 8 класс Макарычев ФГОС Задание 1010

Авторы:
Год:2021
Тип:учебник

Задание 1010

Выбери издание
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
 
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 8 класс Макарычев ФГОС, Теляковский, Миндюк, Нешков Просвещение
Содержание

\[\boxed{\text{1010\ (1010).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Решить уравнение – это значит найти все значения неизвестных, при которых оно обращается в верное числовое равенство, или доказать, что таких значений нет.

Уравнения вида \(\mathbf{a}\mathbf{x}^{\mathbf{2}}\mathbf{+ bx + c = 0}\), где a, b и c – любые числа и a ≠ 0, называется квадратным уравнением.

Дискриминант – это формула, благодаря которой можно найти корни заданного квадратного уравнения:

\[\mathbf{D =}\mathbf{b}^{\mathbf{2}}\mathbf{- 4}\mathbf{\text{ac.}}\]

Формулы корней уравнения:

\[\mathbf{x}_{\mathbf{1}}\mathbf{=}\frac{\mathbf{- b +}\sqrt{\mathbf{D}}}{\mathbf{2}\mathbf{a}}\mathbf{.}\]

\[\mathbf{x}_{\mathbf{2}}\mathbf{=}\frac{\mathbf{- b -}\sqrt{\mathbf{D}}}{\mathbf{2}\mathbf{a}}\mathbf{.}\]

При решении уравнения используем следующее:

1. Чтобы сложить (вычесть) дроби с разными знаменателями, надо привести их к наименьшему общему знаменателю, затем сложить (вычесть) числители дробей, а знаменатель оставить без изменений.

2. Чтобы привести дроби к наименьшему общему знаменателю используем правило:

1. Найти наименьший общий знаменатель, который делится на каждый из знаменателей без остатка.

2. Найти дополнительный множитель, для каждого числителя, разделив общий знаменатель на знаменатели данных дробей.

3. Умножить числитель каждой дроби на дополнительный множитель.

3. Формулу умножения многочлена на многочлен – каждое число из первой скобки умножить на каждое число из второй:

\[\left( \mathbf{a + b} \right)\left( \mathbf{c + d} \right)\mathbf{= ac + ad + bc + bd.}\]

4. Распределительное свойство умножения – число, стоящее перед скобкой, нужно умножить на каждое число в скобке:

\[\mathbf{a}\left( \mathbf{b - c} \right)\mathbf{= ab - ac.}\]

5. Формулу произведения разности двух выражений на их сумму – произведение разности двух выражений и их суммы равно разности квадратов этих выражений:

\[\left( \mathbf{a - b} \right)\left( \mathbf{a + b} \right)\mathbf{=}\mathbf{a}^{\mathbf{2}}\mathbf{-}\mathbf{b}^{\mathbf{2}}\mathbf{.}\]

6. Свойства уравнений:

1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному;

2. Если обе части уравнения умножить или разделить на одно и то же число, отличное от нуля, то получится уравнение, равносильное данному.

Решение.

\[\frac{2x - 7}{x + 1} + \frac{3x + 2}{x - 1} = 7\]

\[5x^{2} - 4x + 9 = 7x^{2} - 7\]

\[- 2x^{2} - 4x + 16 = 0\ \ \ \ |\ :( - 2)\]

\[x^{2} + 2x - 8 = 0\]

\[D = 4 + 32 = 36\]

\[x_{1,2} = \frac{- 2 \pm 6}{2} = 2;\ - 4\]

\[Ответ:\text{\ x}_{1} = 2;\ \ x_{2} = - 4.\]

Издание 2
фгос Алгебра 8 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{1010.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]

\[a > 0,\ \ b > 0,\ \ c > 0\]

\[\frac{3}{a + b + c} < \frac{1}{a + b} + \frac{1}{b + c} +\]

\[+ \frac{1}{c + a}\]

\[\frac{1}{(a + b) + c} + \frac{1}{(b + c) + a} +\]

\[+ \frac{1}{(c + a) + b} < \frac{1}{a + b} +\]

\[+ \frac{1}{b + c} + \frac{1}{c + a}\]

\[верно,\ так\ как:\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам