\[\boxed{\text{6.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\boxed{\text{1.\ }}\]
\[Если\ a \geq 0,\ b \geq 0 \Longrightarrow\]
\(\Longrightarrow \sqrt{\text{ab}} = \sqrt{a} \cdot \sqrt{b}\).
\[Доказательство:1)\sqrt{a} \cdot \sqrt{b} \geq 0,\]
\[\text{\ \ }так\ как\ \sqrt{a} \geq 0,\ \sqrt{b} \geq 0.\]
\[2)\ \left( \sqrt{a} \cdot \sqrt{b} \right)^{2} = ab,\]
\[\text{\ \ }так\ как\ \left( \sqrt{a} \cdot \sqrt{b} \right)^{2} =\]
\[= \left( \sqrt{a} \right)^{2} \cdot \left( \sqrt{b} \right)^{2} = ab.\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\text{2.\ }}\]
\[Если\ a \geq 0,\ b > 0 \Longrightarrow \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}.\]
\[Доказательство:\ \ \]
\[\Longrightarrow x = \frac{y}{z} \Longrightarrow \sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} \Longrightarrow что\ и\ \]
\[требовалось\ доказать.\]
\[\boxed{\text{3.\ }}\]
\[\sqrt{x^{2}} = |x|\ при\ \]
\[\ x \geq 0 \Longrightarrow \sqrt{x^{2}} = x;\]
\[при\ \ x < 0,\ \ \sqrt{x^{2}} = - x.\]
\[то\ есть,\ |x| = x,\]
\[\text{\ \ }при\ x \geq 0\ \ и\ \ \]
\[|x| = - x\ \ \ \ при\ x < 0 \Longrightarrow\]
\[\Longrightarrow \sqrt{x^{2}} = |x|\text{.\ \ \ \ }\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\text{4.\ }}\]
\[\sqrt{a^{12}} = \sqrt{\left( a^{6} \right)^{2}} = a^{6}\]