Условие:
1. Вычислите: √(9-√32) ·√(√32+9).
2. Найдите значение выражения √(7+4√3) +|√3-3|.
3. Решите уравнение 3x+√(x^2-6x+9)=5.
4. Решите неравенство 3√(x-2)+2√x+√(x+2)>-0,2.
5. Упростите выражение 3a^2 √(81a^6 )+4a√(16a^8 )+a^4 |a+2| при a<0.
6. Найдите допустимые значения переменной в выражении
(2x-4)/(√(x-2)-3)+(4x-8)/(|x|-4).
\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]
\[\sqrt{9 - \sqrt{32}} \cdot \sqrt{\sqrt{32} + 9} =\]
\[= \sqrt{(9 - \sqrt{32})(9 + \sqrt{32}} =\]
\[= \sqrt{9^{2} - \left( \sqrt{32} \right)^{2}} = \sqrt{81 - 32} =\]
\[= \sqrt{49} = 7\]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[7 + 4\sqrt{3} = 4 + 2 \cdot 2\sqrt{3} + 3 =\]
\[= \left( 2 + \sqrt{3} \right)^{2}\]
\[\sqrt{7 + 4\sqrt{3}} + \left| \sqrt{3} - 3 \right| =\]
\[= \sqrt{\left( 2 + \sqrt{3} \right)^{2}} + \left| \sqrt{3} - 3 \right| =\]
\[= \left| 2 + \sqrt{3} \right| + \left| \sqrt{3} - 3 \right| =\]
\[= 2 + \sqrt{3} - \sqrt{3} + 3 = 5\]
\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]
\[3x + \sqrt{x^{2} - 6x + 9} = 5\]
\[3x + \sqrt{(x - 3)^{2}} = 5\]
\[3x + |x - 3| = 5\]
\[1)\ x - 3 \geq 0;\ \]
\[\ x \geq 3:\]
\[|x - 3| = x - 3\]
\[3x + x - 3 = 5\]
\[4x = 8\]
\[x = 2\ (но\ x \geq 3)\]
\[нет\ решений.\]
\[2)\ x - 3 < 0;\ \ \]
\[x < 3:\]
\[|x - 3| = - (x - 3) = - x + 3\]
\[3x - x + 3 = 5\]
\[2x = 2\]
\[x = 1\ ( < 3)\]
\[Ответ:x = 1.\]
\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]
\[3\sqrt{x - 2} + 2\sqrt{x} + \sqrt{x + 2} > - 0,2\]
\[x - 2 \geq 0;\ \ x \geq 0;\ \ x + 2 \geq 0\]
\[x \geq 2;\ \ \ \ x \geq 0;\ \ \ x \geq - 2.\]
\[Ответ:x \geq 2.\]
\[\boxed{\mathbf{5}\mathbf{.}\mathbf{\ }}\]
\[3a^{2}\sqrt{81a^{6}} + 4a\sqrt{16a^{8}} + a^{4}|a + 2|\ \]
\[при\ a < 0:\]
\[3a^{2}\sqrt{81a^{6}} + 4a\sqrt{16a^{8}} + a^{4}|a + 2| = \ \]
\[= 3a^{2}\left| 9a^{3} \right| + 4a\left| 4a^{4} \right| + a^{4}|a + 2| =\]
\[= 3a^{2} \cdot \left( - 9a^{3} \right) + 4a \cdot 4a^{4} + a^{4}|a + 2| =\]
\[= - 27a^{5} + 16a^{5} + a^{4}|a + 2| =\]
\[= - 11a^{5} + a^{4}|a + 2|\]
\[1)\ a + 2 < 0;\]
\[a < - 2:\]
\[|a + 2| = - (a + 2)\]
\[- 11a^{5} - a^{4}(a + 2) =\]
\[= - 11a^{5} - a^{5} - 2a^{4} =\]
\[= - 12a^{5} - 2a^{4}.\]
\[2)\ a + 2 \geq 0;\]
\[a \geq - 2;\]
\[- 2 \leq a < 0:\]
\[|a + 2| = a + 2\]
\[- 11a^{5} + a^{4}(a + 2) =\]
\[= - 11a^{5} + a^{5} + 2a^{4} =\]
\[= - 10a^{5} + 2a^{4}.\]
\[\boxed{\mathbf{6}\mathbf{.}\mathbf{\ }}\]
\[\frac{2x - 4}{\sqrt{x - 2} - 3} + \frac{4x - 8}{|x| - 4}\]
\[x - 2 \geq 0\]
\[x \geq 2.\]
\[1)\ \sqrt{x - 2} - 3 \neq 0\]
\[\left( \sqrt{x - 2} \right)^{2} \neq 3^{2}\]
\[x - 2 \neq 9\]
\[x \neq 11.\]
\[2)\ |x| - 4 \neq 0\]
\[x \neq \pm 4.\]
\[Ответ:x \geq 2;x \neq 11;x \neq 4.\]