1. Найдите значение выражения (2a – b)/ab при а = 0,4, b = –5.
2. Определите, какие числа не входят в область допустимых значений дроби:
а) 5х/(х + 1);
б) (а – 4)/За.
3. Сократите дробь (b^2 – c^2)/(b^2 – bc).
4. Найдите сумму или разность:
а) 20/(a^2+ 4a) – 5/a;
б) 6m + (3 – 7m^2)/m.
5. Выполните действия:
а) (x^2–a^2)/(2ах^2)*ax/(a + x);
б) 8m^2/n:2mn.
6. Упростите выражение (a/b + b/a – 2)*1/(a – b).
7. Из формулы ёмкости системы последовательно соединённых конденсаторов 1/C = 1/C1 + 1/C2 выразите С1.
8. Упростите выражение 3a^2b/x^2*x/ab^2:3a^2/x^2b.
9. Сократите дробь (2x^2 – 2у^2 – х + у) / (1 – 2x – 2y).
10. Упростите выражение ((a – 1)/a – a)^2 – ((a – 1)/a + a)^2.
*11. Докажите, что верно равенство 1/((х – y)(y – z)) – 1/((y – z)(x – z)) – 1/((z – x)(y – x)) = 0.
\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]
\[a = 0,4;\ \ b = - 5:\]
\[\frac{2a - b}{\text{ab}} = \frac{2 \cdot 0,4 - ( - 5)}{0,4 \cdot ( - 5)} = \frac{0,8 + 5}{- 2} =\]
\[= \frac{5,8}{- 2} = - 2,9.\]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[\textbf{а)}\ \frac{5x}{x + 1} \Longrightarrow x + 1 \neq 0\]
\[x \neq - 1 - не\ входит\ ОДЗ.\]
\[\textbf{б)}\ \frac{a - 4}{3a} \Longrightarrow 3a \neq 0\]
\[a \neq 0 - не\ входит\ в\ ОДЗ.\]
\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]
\[\frac{b^{2} - c^{2}}{b^{2} - bc} = \frac{(b - c)(b + c)}{b(b - c)} = \frac{b + c}{b}.\]
\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]
\[\textbf{а)}\ \frac{20}{a^{2} + 4a} - \frac{5}{a} = \frac{20}{a(a + 4)} - \frac{5^{\backslash a + 4}}{a} =\]
\[= \frac{20 - 5 \cdot (a + 4)}{a(a + 4)} = \frac{20 - 5a - 20}{a(a + 4)} =\]
\[= \frac{- 5a}{a(a + 4)} = \frac{- 5}{a + 4}\]
\[\textbf{б)}\ 6m^{\backslash m} + \frac{3 - 7m^{2}}{m} = \frac{6m^{2} + 3 - 7m^{2}}{m} =\]
\[= \frac{3 - m^{2}}{m}\]
\[\boxed{\mathbf{5}\mathbf{.}\mathbf{\ }}\]
\[\textbf{а)}\ \frac{x^{2} - a^{2}}{2ax^{2}} \cdot \frac{\text{ax}}{a + x} = \frac{(x - a)(x + a) \cdot \text{ax}}{2ax^{2} \cdot (a + x)} =\]
\[= \frac{x - a}{2x}\]
\[\textbf{б)}\ \frac{8m^{2}}{n}\ :2mn = \frac{8m^{2}}{n} \cdot \frac{1}{2mn} = \frac{4m}{n^{2}}\]
\[\boxed{\mathbf{6}\mathbf{.}\mathbf{\ }}\]
\[\left( \frac{a^{\backslash a}}{b} + \frac{b^{\backslash b}}{a} - 2^{\backslash ab} \right) \cdot \frac{1}{a - b} =\]
\[= \frac{a^{2} + b^{2} - 2ab}{\text{ab}} \cdot \frac{1}{a - b} =\]
\[= \frac{(a - b)^{2}}{\text{ab}(a - b)} = \frac{a - b}{\text{ab}}\]
\[\boxed{\mathbf{7}\mathbf{.}\mathbf{\ }}\]
\[\frac{1}{c} = \frac{1}{c_{1}} + \frac{1}{c_{2}}\]
\[\frac{1}{c_{1}} = \frac{1_{2}^{\backslash c_{2}}}{c} - \frac{1^{\backslash c}}{c_{2}}\]
\[\frac{1}{c_{1}} = \frac{c_{2} - c}{cc_{2}}\]
\[c_{1} = \frac{1}{\frac{c_{2} - c}{cc_{2}}}\]
\[c_{1} = \frac{cc_{2}}{c_{2} - c}.\]
\[\boxed{\mathbf{8}\mathbf{.}\mathbf{\ }}\]
\[\frac{3a^{2}b}{x^{2}} \cdot \frac{x}{ab^{2}}\ :\frac{3a^{2}}{x^{2}b} = \frac{3 \cdot a^{2}b \cdot x \cdot x^{2} \cdot b}{x^{2} \cdot ab^{2} \cdot 3a^{2}} = \frac{x}{a}\]
\[\boxed{\mathbf{9}\mathbf{.}\mathbf{\ }}\]
\[\frac{2x^{2} - 2y^{2} - x + y}{1 - 2x - 2y} =\]
\[= \frac{2 \cdot \left( x^{2} - y^{2} \right) - (x - y)}{1 - 2x - 2y} =\]
\[= \frac{(x - y)\left( 2 \cdot (x + y) - 1 \right)}{1 - 2x - 2y} =\]
\[= \frac{(x - y)(2x + 2y - 1)}{- (2x + 2y - 1)} =\]
\[= - (x - y) = y - x\]
\[\boxed{\mathbf{10}\mathbf{.}\mathbf{\ }}\]
\[\left( \frac{a - 1}{a} - a \right)^{2} - \left( \frac{a - 1}{a} + a \right)^{2} =\]
\[= \left( \frac{a - 1}{a} - a - \frac{a - 1}{a} - a \right) \cdot \left( \frac{a - 1}{a} - a + \frac{a - 1}{a} + a \right) =\]
\[= - 2a \cdot \frac{a - 1 + a - 1}{a} = (2a - 2) \cdot ( - 2) =\]
\[= - 4a + 4\]
\[\boxed{\mathbf{11}\mathbf{.}\mathbf{\ }}\]
\[\frac{1}{(x - y)(y - z)} - \frac{1}{(y - z)(x - z)} - \frac{1}{(z - x)(y - x)} = 0\]
\[\frac{1^{\backslash x - z}}{(x - y)(y - z)} - \frac{1^{\backslash x - y}}{(y - z)(x - z)} - \frac{1^{\backslash y - z}}{(x - z)(x - y)} = 0\]
\[\frac{x - z - x + y - y + z}{(x - y)(y - z)(x - z)} = 0\ \ \ \]
\[0 = 0\]
\[ч.т.д.\]