Условие:
1. Упростите выражение:
а) 17√2-3√22+√50
б) (5√3-√27)*√3
в) (1-√7)^2+2√7
2. Сравните значения выражений:
а) 1/5 √75 и 3/8 √48
б) 1/2 √20 и 5/6 √45
3. Сократите дробь:
а) (3+√3)/(√2+√6)
б) (100-a)/(√a-10 )
4. Освободитесь от иррациональности в знаменателе дроби:
а) 1/(3√3)
б) 49/(5√2-1 )
в) 2/(√(2x+y)-√(2x-y))
5. Докажите, что значение выражения 1/(5√2-1)-1/(1+5√2) есть число рациональное.
\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]
\[\textbf{а)}\ 17\sqrt{2} - 3\sqrt{32} + \sqrt{50} =\]
\[= 17\sqrt{2} - 3\sqrt{16 \cdot 2} + \sqrt{25 \cdot 2} =\]
\[= 17\sqrt{2} - 12\sqrt{2} + 5\sqrt{2} = 10\sqrt{2}\]
\[\textbf{б)}\ \left( 5\sqrt{3} - \sqrt{27} \right) \cdot \sqrt{3} =\]
\[= 5\sqrt{3} \cdot \sqrt{3} - \sqrt{27} \cdot \sqrt{3} =\]
\[= 5 \cdot 3 - \sqrt{81} = 15 - 9 = 6\]
\[\textbf{в)}\ \left( 1 - \sqrt{7} \right)^{2} + 2\sqrt{7} =\]
\[= 1 - 2\sqrt{7} + 7 + 2\sqrt{7} = 8\]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[\textbf{а)}\ \frac{1}{5}\sqrt{75} < \frac{3}{8}\sqrt{48}\]
\[\frac{1}{5}\sqrt{75} = \sqrt{\frac{75}{25}} = \sqrt{3}\]
\[\frac{3}{8}\sqrt{48} = \frac{3}{8}\sqrt{16 \cdot 3} =\]
\[= \frac{3}{8} \cdot 4\sqrt{3} = 1,5\sqrt{3}\]
\[\sqrt{3} < 1,5\sqrt{3}.\]
\[\textbf{б)}\ \frac{1}{2}\sqrt{20} < \frac{5}{6}\sqrt{45}\]
\[\frac{1}{2}\sqrt{20} = \frac{1}{2}\sqrt{4 \cdot 5} =\]
\[= \frac{1}{2} \cdot 2\sqrt{5} = \sqrt{5}\]
\[\frac{5}{6}\sqrt{45} = \frac{5}{6}\sqrt{9 \cdot 5} =\]
\[= \frac{5}{6} \cdot 3\sqrt{5} = 2,5\sqrt{5}\]
\[\sqrt{5} < 2,5\sqrt{5}\]
\[\boxed{\mathbf{3.}\mathbf{\ }}\]
\[\textbf{а)}\ \frac{3 + \sqrt{3}}{\sqrt{2} + \sqrt{6}} = \frac{\sqrt{3}\left( \sqrt{3} + 1 \right)}{\sqrt{2}\left( 1 + \sqrt{3} \right)} =\]
\[= \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{6}}{2}\]
\[\textbf{б)}\ \frac{100 - a}{\sqrt{a} - 10\ } =\]
\[= - \frac{\left( \sqrt{a} - 10 \right)\left( \sqrt{a} + 10 \right)}{\sqrt{a} - 10\ } =\]
\[= - \sqrt{a} - 10\]
\[\boxed{\mathbf{4.}\mathbf{\ }}\]
\[\textbf{а)}\ \frac{1}{3\sqrt{3}} = \frac{\sqrt{3}}{3\sqrt{3} \cdot \sqrt{3}} = \frac{\sqrt{3}}{3 \cdot 3} = \frac{\sqrt{3}}{9}\]
\[\textbf{б)}\ \frac{49}{5\sqrt{2} - 1\ } =\]
\[= \frac{49 \cdot \left( 5\sqrt{2} + 1 \right)}{\left( 5\sqrt{2} - 1 \right)\left( 5\sqrt{2} + 1 \right)} =\]
\[= \frac{49 \cdot \left( 5\sqrt{2} + 1 \right)}{25 \cdot 2 - 1} =\]
\[= \frac{49 \cdot \left( 5\sqrt{2} + 1 \right)}{49} = 5\sqrt{2} + 1\]
\[\textbf{в)}\ \frac{2}{\sqrt{2x + y} - \sqrt{2x - y}} =\]
\[= \frac{2 \cdot \left( \sqrt{2x + y} + \sqrt{2x - y} \right)}{\left( \sqrt{2x + y} - \sqrt{2x - y} \right)\left( \sqrt{2x + y} + \sqrt{2x - y} \right)} =\]
\[= \frac{2 \cdot \left( \sqrt{2x + y} + \sqrt{2x - y} \right)}{2x + y - (2x - y)} =\]
\[= \frac{2 \cdot \left( \sqrt{2x + y} + \sqrt{2x - y} \right)}{2x + y - 2x + y} =\]
\[= \frac{2 \cdot \left( \sqrt{2x + y} + \sqrt{2x - y} \right)}{2y} =\]
\[= \frac{\sqrt{2x + y} + \sqrt{2x - y}}{y}\]
\[\boxed{\mathbf{5.}\mathbf{\ }}\]
\[\frac{1^{\backslash 5\sqrt{2} + 1}}{5\sqrt{2} - 1} - \frac{1^{\backslash 5\sqrt{2} - 1}}{1 + 5\sqrt{2}} =\]
\[= \frac{5\sqrt{2} + 1 - 5\sqrt{2} + 1}{\left( 5\sqrt{2} - 1 \right)\left( 5\sqrt{2} + 1 \right)} =\]
\[= \frac{2}{25 \cdot 2 - 1} = \frac{2}{49} -\]
\[рациональное\ выражение.\]
\[Что\ и\ требовалось\ доказать.\]