Решебник по алгебре 8 класс Макарычев контрольные работы КР-1. Параграф 2. Сумма и разность дробей Вариант 1

Авторы:
Тип:контрольные и самостоятельные
Серия:Пособие для учителей
Нужно другое издание?

Вариант 1

Условие:

1. Сократите дробь:

а) (64a^8 b^11)/(48a^16 b)

б) (25x^4)/(3x^8+x^4 )

в) (25m^2-9n^2)/(12n+20m)

2. Преобразуйте в дробь выражение:

а) (a-3)/3a+(a-1)/a²

б) 1/(3x-y)-1/(3x+y)

в) 5/(a-2)-(5a-1)/(a^2-2a)

3. Найдите значение выражения (60a^2-b)/10a-6a при a=1,2; b=-18.

4. Упростите выражение 3/(2a-6)-(a+15)/(2a^2-18)-1/a

5. Зная, что a-b=7, найдите значение дроби (2a-2b)^2/1,4

\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]

\[\textbf{а)}\ \frac{64a^{8}b^{11}}{48a^{16}b} = \frac{4b^{10}}{3a^{8}}\]

\[\textbf{б)}\ \frac{25x^{4}}{3x^{8} + x^{4}} = \frac{25x^{4}}{x^{4}\left( 3x^{4} + 1 \right)} =\]

\[= \frac{25}{3x^{4} + 1}\]

\[\textbf{в)}\ \frac{25m^{2} - 9n^{2}}{12n + 20m} =\]

\[= \frac{(5m - 3n)(5m + 3n)}{4 \cdot (3n + 5m)} =\]

\[= \frac{5m - 3n}{4}\]

\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]

\[\textbf{а)}\ \frac{a - 3^{\backslash a}}{3a} + \frac{a - 1^{\backslash 3}}{a^{2}} =\]

\[= \frac{a^{2} - 3a + 3a - 3}{3a^{2}} =\]

\[= \frac{a^{2} - 3}{3a²}\]

\[\textbf{б)}\ \frac{1^{\backslash 3x + y}}{3x - y} - \frac{1^{\backslash 3x - y}}{3x + y} =\]

\[= \frac{3x + y - 3x + y}{(3x - y)(3x + y)} =\]

\[= \frac{2y}{9x^{2} - y^{2}}\]

\[\textbf{в)}\ \frac{5}{a - 2} - \frac{5a - 1}{a^{2} - 2a} =\]

\[= \frac{5^{\backslash a}}{a - 2} - \frac{5a - 1}{a(a - 2)} =\]

\[= \frac{5a - 5a + 1}{a(a - 2)} = \frac{1}{a^{2} - 2a}\]

\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]

\[\frac{60a^{2} - b}{10a} - 6a^{\backslash 10a} =\]

\[= \frac{60a^{2} - b - 60a^{2}}{10a} =\]

\[= - \frac{b}{10a}\ \]

\[при\ a = 1,2;b = - 18:\]

\[- \frac{b}{10a} = \frac{18}{10 \cdot 1,2} = \frac{18}{12} = \frac{3}{2} = 1,5.\]

\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]

\[\frac{3}{2a - 6} - \frac{a + 15}{2a^{2} - 18} - \frac{1}{a} =\]

\[= \frac{3^{\backslash a(a + 3)}}{2 \cdot (a - 3)} - \frac{a + 15^{\backslash a}}{2 \cdot \left( a^{2} - 9 \right)} - \frac{1^{\backslash 2(a^{2} - 9)}}{a} =\]

\[= \frac{3a^{2} + 9a - a^{2} - 15a - 2a^{2} + 18}{2a(a - 3)(a + 3)} =\]

\[= \frac{18 - 6a}{2a(a - 3)(a + 3)} =\]

\[= \frac{- 6(a - 3)}{2a(a - 3)(a + 3)} =\]

\[= \frac{- 3}{a(a + 3)}\]

\[\boxed{\mathbf{5}\mathbf{.}\mathbf{\ }}\]

\[При\ a - b = 7:\]

\[\frac{(2a - 2b)^{2}}{1,4} = \frac{4 \cdot (a - b)^{2}}{1,4} =\]

\[= \frac{2 \cdot 7^{2}}{0,7} = \frac{2 \cdot 7}{0,1} = \frac{14}{0,1} = 140.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам