\[\boxed{\text{705\ (705).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\boxed{\text{705.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ ( - x + 1)^{2} = (1 - x)^{2} =\]
\[= 1 - 2x + x^{2}\]
\[2)\ ( - m - 9)^{2} =\]
\[= \left( - 1 \cdot (m + 9) \right)^{2} =\]
\[= ( - 1)^{2} \cdot (m + 9)^{2} =\]
\[= m^{2} + 18m + 81\]
\[3)\ ( - 5a + 3b)^{2} = (3b - 5a)^{2} =\]
\[= 9b^{2} - 30ab + 25a^{2}\]
\[4)\ ( - 4x - 8y)^{2} =\]
\[= \left( - 1 \cdot (4x + 8y) \right)^{2} =\]
\[= ( - 1)^{2} \cdot (4x + 8y)^{2} =\]
\[= 16x^{2} + 64xy + 64y^{2}\]
\[5)\ ( - 0,7c - 10d)^{2} =\]
\[= \left( - 1 \cdot (0,7c + 10d) \right)^{2} =\]
\[= ( - 1)^{2} \cdot (0,7c + 10d)^{2} =\]
\[= 0,49c^{2} + 14cd + 100d^{2}\]
\[6)\ \left( - 4a^{2} + \frac{1}{8}\text{ab} \right)^{2} =\]
\[= \left( \frac{1}{8}ab - 4a^{2} \right)^{2} =\]
\[= \frac{1}{64}a^{2}b^{2} - a^{3}b + 16a^{4}.\]