\[\boxed{\text{699\ (699).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[8a^{3} - b^{3} =\]
\[= (2a - b)\left( 4a^{2} + 2\text{ab} + b^{2} \right) =\]
\[= (2a - b)\left( 4a^{2} - 4\text{ab} + b^{2} + 6\text{ab} \right) =\]
\[= (2a - b)(2a - b)^{2} + 6ab =\]
\[= 1 \cdot 1² + 6ab = 1 + 6ab\]
\[6ab + 1 = 6ab + 1.\]
\[\boxed{\text{699.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ (x - 12)^{2} + 24x =\]
\[= x^{2} - 24x + 144 + 24x =\]
\[= x^{2} + 144\]
\[2)\ (x + 8)^{2} - x(x + 5) =\]
\[= x^{2} + 16x + 64 - x^{2} - 5x =\]
\[= 11x + 64\]
\[3)\ 2x(x + 2) - (x - 2)^{2} =\]
\[= 2x^{2} + 4x - x^{2} + 4x - 4 =\]
\[= x^{2} + 8x - 4\]
\[4)\ (y + 7)^{2} + (y + 2)(y - 7) =\]
\[= 2y^{2} + 9y + 35\]
\[5)\ (a + 1)(a - 1) - (a + 4)^{2} =\]
\[= a^{2} - 1 - a^{2} - 8a - 16 =\]
\[= - 8a - 17\]
\[= 39x + 10\]