\[\boxed{\text{664\ (664).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[b^{2} + \frac{a^{2}}{4} = 1;\ \ ab = 3;\ \ \]
\[a > 0;\ \ b > 0\]
\[\left( b + \frac{a}{2} \right)^{2} = 4,\ \ \]
\[b + \frac{a}{2} = 2\ \ \ \ \ | \cdot 2\]
\[2b + a = 4\]
\[Ответ:4.\]
\[\boxed{\text{664.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ (x + 2)^{2} - 49 =\]
\[= (x + 2 - 7)(x + 2 + 7) =\]
\[= (x - 5)(x + 9)\]
\[2)\ (x - 10)^{2} - 25y^{2} =\]
\[= (x - 10 - 5y)(x - 10 + 5y)\]
\[3)\ 25 - (y - 3)^{2} =\]
\[= (5 - y + 3)(5 + y - 3) =\]
\[= (8 - y)(2 + y)\]
\[4)\ (a - 4)^{2} - (a + 2)^{2} =\]
\[= (2a - 2) \cdot ( - 6) =\]
\[= - 12a + 12 = - 12 \cdot (a - 1)\]
\[5)\ (m - 10)^{2} - (n - 6)^{2} =\]
\[= (m - n - 4)(m + n - 16)\]
\[6)\ (8y + 4)^{2} - (4y - 3)^{2} =\]
\[= (4y + 7)(12y + 1)\]
\[7)\ (5a + 3b)^{2} - (2a - 4b)^{2} =\]
\[= (3a + 7b)(7a - b)\]
\[8)\ 4 \cdot (a - b)^{2} - (a + b)^{2} =\]
\[= (a - 3b)(3a - b)\]
\[= (2x - 1)(2x^{2} + 3)\]
\[10)\ \left( - 3x^{3} + y \right)^{2} - 16x^{6} =\]
\[= (y - 7x^{3})(y + x^{3})\]