\[\boxed{\text{631\ (631).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ n² + 60n + \ * = (* + 30)^{2},\ \ \]
\[2)\ 25c² - \ *\ + *\ = (*\ - \ 8k)^{2},\ \ \]
\[3)\ 225a² - \ *\ + 64b^{4} = (*\ - \ *)^{2},\ \ \]
\[4)\ 0,04x² + \ *\ + * = (*\ + 0,3y^{3})²\]
\[\boxed{\text{631.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ \left( a^{n} - 4 \right)\left( a^{n} + 4 \right) =\]
\[= \left( a^{n} \right)^{2} - 4^{2} = a^{2n} - 16\]
\[2)\ \left( b^{2n} + c^{3n} \right)\left( b^{2n} - c^{3n} \right) =\]
\[= \left( b^{2n} \right)^{2} - \left( c^{3n} \right)^{2} = b^{4n} - c^{6n}\]
\[3)\ \left( x^{4n} + y^{n + 2} \right)\left( y^{n + 2} - x^{4n} \right) =\]
\[= \left( y^{n + 2} \right)^{2} - \left( x^{4n} \right)^{2} =\]
\[= y^{2n + 4} - x^{8n}\]
\[4)\ \left( a^{n + 1} - b^{n - 1} \right)\left( a^{n + 1} + b^{n - 1} \right) =\]
\[= \left( a^{n + 1} \right)^{2} - \left( b^{n - 1} \right)^{2} =\]
\[= a^{2n + 2} - b^{2n - 2}\]