\[\boxed{\text{620\ (620).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ наибольшее\ значение\ \ \]
\[- x^{2} = 0 \Longrightarrow \ при\ x = 0;\]
\[2)\ наибольшее\ значение\ \ \]
\[- x^{2} + 4 = 4\ \Longrightarrow при\ x = 0;\]
\[3)\ наибольшее\ значение\ \ \]
\[12 - (x - 1)^{2} = 12 \Longrightarrow при\ \]
\[x - 1 = 0;\ x = 1.\]
\[\boxed{\text{620.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ (c - 2)(c + 2) = c^{2} - 4\]
\(2)\ (12 - x)(12 + x) = 144 - x^{2}\)
\[3)\ (3x + y)(3x - y) =\]
\[= (3x)^{2} - y^{2} = 9x^{2} - y^{2}\]
\[4)\ (6x - 9)(6x + 9) =\]
\[= (6x)^{2} - 9^{2} = 36x^{2} - 81\]
\[5)\ (x + 7)(7 - x) = 7^{2} - x^{2} =\]
\[= 49 - x^{2}\]
\[6)\ (5a - 8b)(5a + 8b) =\]
\[= (5a)^{2} - (8b)^{2} = 25a^{2} - 64b^{2}\]
\[7)\ (8m + 2)(2 - 8m) =\]
\[= 2^{2} - (8m)^{2} = 4 - 64m^{2}\]
\[8)\ (13c - 14d)(14d + 13c) =\]
\[= (13c)^{2} - (14d)^{2} =\]
\[= 169c^{2} - 196d^{2}\]