\[\boxed{\text{574\ (574).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ (x + 9)^{2} - x \cdot (x + 8) = 1\]
\[x^{2} + 18x + 81 - x^{2} - 8x = 1\]
\[10x = - 80\]
\[x = - 8\]
\[Ответ:\ x = - 8.\]
\[2)\ (x - 11)^{2} = (x - 7)(x - 9)\]
\[x^{2} - 22x + 121 =\]
\[= x^{2} - 9x - 7x + 63\]
\[- 6x = - 58\]
\[x = \frac{58}{6} = 9\frac{2}{3}\]
\[Ответ:x = 9\frac{2}{3}.\]
\[3)\ (x - 4)(x + 4) - (x + 6)^{2} =\]
\[= - 16\]
\[x^{2} - 16 - x^{2} - 12x - 36 = - 16\]
\[- 12x = 36\]
\[x = - 3\]
\[Ответ:\ x = - 3.\]
\[4)\ (1 - 3x)^{2} - x(9x - 2) = 5\]
\[1 - 6x + 9x^{2} - 9x^{2} + 2x = 5\]
\[- 4x = 4\]
\[x = - 1\]
\[Ответ:\ x = - 1.\]
\[\boxed{\text{574.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ a^{n + 2} - a^{n} =\]
\[= a^{n} \cdot a^{2} - a^{n} \cdot 1 =\]
\[= a^{n} \cdot \left( a^{2} - 1 \right).\]
\[2)\ 3b^{n + 2} - 2b^{n + 1} + b^{n} =\]
\[= b^{n} \cdot \left( 3b^{2} - 2b + 1 \right).\]
\[3)\ 32^{n} + 16^{2n + 1} =\]
\[= \left( 2^{5} \right)^{n} + \left( 2^{4} \right)^{2n + 1} =\]
\[= 2^{5n} + 2^{8n + 4} =\]
\[= 2^{5n} + 2^{5n} \cdot 2^{3n + 4} =\]
\[= 2^{5n} \cdot \left( 1 + 2^{3n + 4} \right)\text{.\ }\]