\[\boxed{\text{550\ (550).\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ (7n + 4)^{2} - 9 =\]
\[= (7n + 4 - 3)(7n + 4 + 3) =\]
\[= (7n + 1)(7n + 7) =\]
\[= 7 \cdot (7n + 1)(n + 1) \Longrightarrow\]
\[\Longrightarrow делится\ на\ 7.\]
\[2)\ (8n + 1)^{2} - (3n - 1)^{2} =\]
\[= (5n + 2) \cdot 11 \cdot n \Longrightarrow делится\ \]
\[на\ 11.\]
\[3)\ (3n + 7)^{2} - (3n - 5)^{2} =\]
\[= 12 \cdot (6n + 2) =\]
\[= 12 \cdot 2 \cdot (3n + 1) =\]
\[= 24 \cdot (3n + 1) \Longrightarrow делится\ на\ \]
\[24.\]
\[4)\ (7n + 6)^{2} - (2n - 9)^{2} =\]
\[= (5n + 15)(9n - 3) =\]
\[= 5 \cdot (n + 3) \cdot 3 \cdot (3n - 1) =\]
\[= 15 \cdot (n + 3)(3n - 1) \Longrightarrow\]
\[\Longrightarrow делится\ на\ 15.\]
\[\boxed{\text{550.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ x^{2} - x = 0\]
\[x \cdot (x - 1) = 0\]
\[x = 0\ \ или\ \ x - 1 = 0\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 1.\]
\[Ответ:x = 0;1.\]
\[2)\ p^{2} + 15p = 0\]
\[p \cdot (p + 15) = 0\]
\[p = 0\ \ или\ \ p + 15 = 0\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ p = - 15.\]
\[Ответ:p = 0;\ - 15.\]
\[3)\ 5x^{2} - 30x = 0\]
\[5x \cdot (x - 6) = 0\]
\[x = 0\ \ или\ \ x - 6 = 0\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = 6\]
\[Ответ:x = 0;6.\]
\[4)\ 14x^{2} + 18x = 0\]
\[2x \cdot (7x + 9) = 0\]
\[x = 0\ \ или\ \ 7x + 9 = 0\]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }x = - \frac{9}{7} =\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = - 1\frac{2}{7}.\]
\[Ответ:\ x = 0;\ - 1\frac{2}{7}\text{.\ }\]