\[\boxed{\text{488\ (488).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ x^{2} + 4x + 3 =\]
\[= x^{2} + 3x + x + 3 =\]
\[= x \cdot (x + 1) + 3 \cdot (x + 1) =\]
\[= (x + 1) \cdot (x + 3).\]
\[2)\ x^{2} - 10x + 16 =\]
\[= x^{2} - 8x - 2x + 16 =\]
\[= x \cdot (x - 2) - 8 \cdot (x - 2) =\]
\[= (x - 2) \cdot (x - 8).\]
\[3)\ x^{2} + 3x - 18 =\]
\[= x^{2} + 6x - 3x - 18 =\]
\[= x \cdot (x - 3) + 6 \cdot (x - 3) =\]
\[= (x - 3) \cdot (x + 6).\]
\[4)\ x^{2} - 4x - 32 =\]
\[= x^{2} - 8x + 4x - 32 =\]
\[= x \cdot (x + 4) - 8 \cdot (x + 4) =\]
\[= (x + 4) \cdot (x - 8)\text{.\ }\]