\[\boxed{\text{476\ (476).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ ma + mb + 4a + 4b =\]
\[= (ma + mb) + (4a + 4b) =\]
\[= m(a + b) + 4 \cdot (a + b) =\]
\[= (a + b)(m + 4)\]
\[2)\ 3x + cy + cx + 3y =\]
\[= (3x + 3y) + (cy + cx) =\]
\[= 3 \cdot (x + y) + c(x + y) =\]
\[= (x + y)(3 + c)\]
\[3)\ 5a - 5b + ap - bp =\]
\[= (5a + ap) - (5b + bp) =\]
\[= a \cdot (5 + p) - b \cdot (5 + p) =\]
\[= (5 + p) \cdot (a - b).\]
\[4)\ 7m + mn + 7 + n =\]
\[= (7m + 7) + (mn + n) =\]
\[= 7 \cdot (m + 1) + n \cdot (m + 1) =\]
\[= (m + 1) \cdot (7 + n).\]
\[5)\ a - 1 + ab - b =\]
\[= (a + ab) - (1 + b) =\]
\[= a \cdot (1 + b) - 1 \cdot (1 + b) =\]
\[= (1 + b) \cdot (a - 1).\]
\[6)\ xy + 8y - 2x - 16 =\]
\[= (xy + 8y) - (2x + 16) =\]
\[= y \cdot (x + 8) - 2 \cdot (x + 8) =\]
\[= (x + 8) \cdot (y - 2).\]
\[7)\ ab + ac - b - c =\]
\[= (ab - b) + (ac - c) =\]
\[= b \cdot (a - 1) + c \cdot (a - 1) =\]
\[= (a - 1) \cdot (b + c).\]
\[8)\ 3p - 3k - 4ap + 4ak =\]
\[= (3p - 3k) - (4ap - 4ak) =\]
\[= 3 \cdot (p - k) - 4a \cdot (p - k) =\]
\[= (p - k) \cdot (3 - 4a)\text{.\ }\]