\[\boxed{\text{433\ (433).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ am + an = a \cdot (m + n).\]
\[2)\ 6x - 6y = 6 \cdot (x - y).\]
\[3)\ 4b + 16c = 4 \cdot (b + 4c).\]
\[4)\ 12x - 15y = 3 \cdot (4x - 5y).\]
\[5) - cx - cy = - c \cdot (x + y).\]
\[6)\ 4bk + 4bt = 4b \cdot (k + t).\]
\[7) - 8a - 18b = - 2 \cdot (4a + 9b).\]
\[8)\ ax + a = a \cdot (x + 1).\]
\[9)\ 7c - 7 = 7 \cdot (c - 1).\]
\[10)\ 24x + 30y = 6 \cdot (4x + 5y).\]
\[11)\ 10mx - 15my =\]
\[= 5m \cdot (2x - 3y).\]
\[12)\ x^{2} + xy = x \cdot (x + y).\]
\[13)\ 3d^{2} - 3cd = 3d \cdot (d - c).\]
\[14)\ 4a^{2} + 16ab = 4a \cdot (a + 4b).\]
\[15)\ a^{6} - a^{3} = a^{3} \cdot \left( a^{3} - 1 \right).\]
\[16)\ b^{2} + b^{8} = b^{2} \cdot \left( 1 + b^{6} \right).\]
\[17)\ 7p^{3} - 5p = p \cdot \left( 7p^{2} - 5 \right).\]
\[18)\ 15c^{2}d - 3cd =\]
\[= 3cd \cdot (5c - 1).\]
\[19)\ 14x^{2}y + 21xy^{2} =\]
\[= 7xy \cdot (2x + 3y).\]
\[20) - 2x^{9} + 16x^{6} =\]
\[= - 2x^{6} \cdot \left( x^{3} - 8 \right),\]
\[21)\ 8a^{4}b^{2} - 36a^{3}b^{7} =\]
\[= 4a^{3}b^{2} \cdot \left( 2a - 9b^{5} \right)\text{.\ \ }\]
\[\boxed{\text{433.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[16a - 6b + 27b - 2a =\]
\[= 14a + 21b = 7 \cdot (2a + 3b).\]
\[Делится\ нацело\ на\ 7\ при\ \]
\[любых\ значениях\ \text{a\ }и\ \text{b.\ }\]
\[Что\ и\ требовалось\ доказать.\]