\[\boxed{\text{402\ (402).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ (a + 5)^{2} = (a + 5) \cdot (a + 5) =\]
\[= a^{2} + 5a + 5a + 25 =\]
\[= a^{2} + 10a + 25.\]
\[2)\ (4 - 3b)^{2} =\]
\[= (4 - 3b) \cdot (4 - 3b) =\]
\[= 16 - 12b - 12b + 9b^{2} =\]
\[= 9b^{2} - 24b + 16.\]
\[3)\ (a + b + c)^{2} =\]
\[= (a + b + c) \cdot (a + b + c) =\]
\[4)\ (a - b)^{3} =\]
\[= (a - b) \cdot (a - b) \cdot (a - b) =\]
\[= \left( a^{2} - ab - ab + b^{2} \right) \cdot (a - b) =\]
\[= \left( a^{2} - 2ab + b^{2} \right) \cdot (a - b) =\]
\[\boxed{\text{402.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1) - 6 - a^{2} + a^{2} + 13 = 7\]
\[2)\ a^{2} - b + c^{3} - a^{2} + b + c^{2} =\]
\[= c^{3} + c^{2}\]
\[3)\ 3x + 14 - x^{2} - 3x - 18 =\]
\[= - x^{2} - 4\]