\[\boxed{\text{357\ (357).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ 8x - 2x \cdot (3x + 4) =\]
\[= 8x - 6x^{2} - 8x = - 6x^{2}.\]
\[2)\ 7a^{2} + 3a \cdot (9 - 5a) =\]
\[= 7a^{2} + 27a - 15a^{2} =\]
\[= - 8a^{2} + 27a.\]
\[3)\ 6x \cdot (4x - 7) - 12 \cdot \left( 2x^{2} + 1 \right) =\]
\[= 24x^{2} - 42x - 24x^{2} - 12 =\]
\[= - 42x - 12.\]
\[4)\ c \cdot \left( c^{2} - 1 \right) + c^{2} \cdot (c - 1) =\]
\[= c^{3} - c + c^{3} - c^{2} =\]
\[= 2c^{3} - c^{2} - c.\]
\[= 7m^{2} + 5mn.\]
\[= - x^{3} + 17xy^{2}.\]
\[\boxed{\text{357.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ (2b)^{3} = 8b^{3}\]
\[2)\ \left( 10c^{4} \right)^{3} = 1000c^{12}\]
\[3)\ \left( \frac{1}{3}x^{5} \right)^{3} = \frac{1}{27}x^{15}\]
\[4)\ \left( - 0,1m^{7}n^{10} \right)^{3} = - 0,001m^{21}n^{30}\]
\[5)\ \left( - \frac{1}{4}x^{3}y^{2} \right)^{3} = - \frac{1}{64}x^{9}y^{6}\]
\[6)\ \left( - a^{3}b^{2}c \right)^{3} = - a^{9}b^{6}c^{3}\]