\[\boxed{\text{244\ (244).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ x^{7} = 6^{14}\]
\[x^{7} = \left( 6^{2} \right)^{7}\]
\[x = 6^{2}\]
\[x = 36\]
\[Ответ:x = 36.\]
\[2)\ x^{4} = 5^{12}\]
\[x^{4} = \left( 5^{3} \right)^{4}\]
\[x = 5^{3}\text{\ \ \ \ \ }или\ \ \ \ x = - 5^{3}\]
\[x = 125\ \ \ \ \ \ \ \ \ \ \ \ \ \ x = - 125\]
\[Ответ:x = 125;\ - 125.\]
\[\boxed{\text{244.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[1)\ ( - 5,8)^{2} > 0.\]
\[2)\ 0 > ( - 3,7)^{3}.\]
\[3)\ ( - 12)^{7} < ( - 6)^{4}.\]
\[4) - 8^{8} < ( - 8)^{8}.\]
\[5)\ ( - 17)^{6} = 17^{6}.\]
\[6)\ ( - 34)^{5} > ( - 39)^{5}\text{.\ }\]