\[\boxed{\text{231\ (231).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ a^{2} \cdot b^{6} = a^{2} \cdot \left( b^{3} \right)^{2} = \left( ab^{3} \right)^{2}\]
\[2)\ x^{8}y^{14} = \left( x^{4} \right)^{2} \cdot \left( y^{7} \right)^{2} =\]
\[= \left( x^{4}y^{7} \right)^{2}\]
\[3)\ x^{4}y^{10}z^{18} =\]
\[= \left( x^{2} \right)^{2} \cdot \left( y^{5} \right)^{2} \cdot \left( z^{9} \right)^{2} =\]
\[= \left( x^{2}y^{5}z^{9} \right)^{2}\]
\[4)\ 4m^{12}n^{16} =\]
\[= 2^{2} \cdot \left( m^{6} \right)^{2} \cdot \left( n^{8} \right)^{2} = \left( 2m^{6}n^{8} \right)^{2}\]
\[5)\ 81c^{10}d^{32}p^{44} =\]
\[= 9^{2} \cdot \left( c^{5} \right) \cdot \left( d^{16} \right)^{2} \cdot \left( p^{22} \right)^{2} =\]
\[= \left( 9c^{5}d^{16}p^{22} \right)^{2}\]
\[\boxed{\text{231.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ 3^{7} = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3\]
\[2)\ \left( 2\frac{1}{7} \right)^{4} = 2\frac{1}{7} \cdot 2\frac{1}{7} \cdot 2\frac{1}{7} \cdot 2\frac{1}{7}\]
\[3)\ (c + d)^{3} = (c + d)(c + d)(c + d)\]
\[4)\ (a - b)^{2} = (a - b)(a - b)\]