\[\boxed{\text{1150\ (1150).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[3x^{2} - 9x - \left( 8 - 5x^{2} - \left( 9x - 8x^{2} \right) \right) =\]
\[= 3x^{2} - 9x - 8 + 5x^{2} + 9x - 8x^{2} =\]
\[= - 8\]
\[Следовательно,\ значения\ \]
\[данного\ выражения\ не\ зависит\ \]
\[от\ значения\ переменной.\]
\[\boxed{\text{1150.\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[3m^{2}n = 2;\ \ \ \ \ n^{2}k^{4} = 3;\ \ \ \ \ \]
\[m^{2}n = \frac{2}{3}\]
\[1){\ \left( 3m^{2}n^{2}k^{2} \right)}^{2} =\]
\[= \left( 3m^{2}n \right)^{2} \cdot \left( nk^{2} \right)^{2} =\]
\[= 2² \cdot n^{2}k^{4} = 4 \cdot 3 = 12\]
\[2)\ \left( - 2m^{2}nk^{2} \right)^{3} \cdot \left( 0,5n^{2}k \right)^{2} =\]
\[= ( - 2)^{3} \cdot \left( m^{2}nk^{2} \right)^{3} \cdot \left( 0,5n^{2}k \right)^{2} =\]
\[= - 8 \cdot \left( m^{2}k \right)^{3} \cdot k^{6} \cdot \frac{1}{4}n^{4}k^{2} =\]
\[= - 8 \cdot \left( \frac{2}{3} \right)^{3} \cdot \frac{1}{4} \cdot n^{4}k^{8} =\]
\[= - 2 \cdot \frac{8}{27} \cdot \left( n^{2}k^{4} \right)^{2} =\]
\[= - 2 \cdot \frac{8}{27} \cdot 9 = \frac{- 2 \cdot 8 \cdot 9}{27} =\]
\[= - \frac{16}{3} = - 5\frac{1}{3}\]