\[\boxed{\text{676.}\text{\ }еуроки - ответы\ на\ пятёрку}\]
Пояснение.
Решение.
\[\textbf{а)}\ 3,28x - x^{2} = x(3,28 - x)\]
\[если\ x = 2,28:\ \]
\[2,28 \cdot (3,28 - 2,28) = 2,28 \cdot 1 =\]
\[= 2,28.\]
\[\textbf{б)}\ a^{2}y + a^{3} = a^{2}(y + a)\]
\[если\ a = - 1,5;\ \ y = - 8,5:\ \ \ \ \ \]
\[( - 1,5)^{2} \cdot ( - 8,5 - 1,5) =\]
\[= 2,25 \cdot ( - 10) = - 22,5.\]
\[\textbf{в)}\ ay² - y^{3} = y²(a - y)\]
\[если\ a = 8,8,\ \ y = - 1,2;\ \ \ \ \ \]
\[то\ \ ( - 1,2)^{2} \cdot \left( 8,8 - ( - 1,2) \right) =\]
\[= 1,44 \cdot 10 = 14,4.\]
\[\textbf{г)} - mb - m^{2} = - m(b + m)\]
\[если\ m = 3,48;\ \ b = 96,52:\ \ \ \ \]
\[- 3,48 \cdot (96,52 + 3,48) =\]
\[= - 3,48 \cdot 100 = - 348.\]
\[\boxed{\text{676\ (676).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ (a - b)(a + b)\]
\[\textbf{б)}\ a^{2} + b^{2}\]
\(в)\ (a + b)^{2}\)
\[\textbf{г)}\ b^{2} - c^{2}\]
\[\textbf{д)}\ (b - c)^{3}\]
\[\textbf{е)}\ b^{3} + c^{3}\ \]