\[\boxed{\text{494.}\text{\ }еуроки - ответы\ на\ пятёрку}\]
Пояснение.
Чтобы возвести степень в степень, показатели нужно перемножить, а основание оставить неизменным:
\[\left( a^{m} \right)^{n} = a^{m \cdot n}.\]
Решение.
\[\textbf{а)}\ x^{6}y^{12} = \left( x^{2}y^{4} \right)^{3} = (x^{3}y^{6})²\]
\[\textbf{б)}\ 1\ 000\ 000m^{18} = \left( 100m^{6} \right)^{3} =\]
\[= (1000m^{9})²\ \]
\[\boxed{\text{494\ (494).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ x^{2} = x + 6\]
\[Построим:\ \ y = x^{2}\ и\ \ \ y = x + 6.\]
\[y = x^{2}\]
\[x\] | \[2\] | \[1\] | \[0\] | \[- 2\] |
---|---|---|---|---|
\[y\] | \[4\] | \[1\] | \[0\] | \[- 4\] |
\[y = x + 6\]
\[x\] | \[0\] | \[- 6\] |
---|---|---|
\[y\] | \[6\] | \[0\] |
\[Ответ:x = - 2;\ \ x = 3.\]
\[\textbf{б)}\ x^{2} + 2x - 3 = 0\]
\[x^{2} = 3 - 2x\]
\[Построим:\ \ \ y = x^{2}\text{\ \ }и\ \ \ \]
\[y = 3 - 2x.\]
\[y = x^{2}\]
\[x\] | \[2\] | \[1\] | \[0\] | \[- 2\] |
---|---|---|---|---|
\[y\] | \[4\] | \[1\] | \[0\] | \[- 4\] |
\[y = 3 - 2x\]
\[x\] | \[0\] | \[1\] |
---|---|---|
\[y\] | \[3\] | \[1\] |
\[Ответ:x = - 3;\ \ x = 1.\]