\[\boxed{\text{451.}\text{\ }еуроки - ответы\ на\ пятёрку}\]
Пояснение.
Решение.
\[\textbf{а)}\ b^{3}x^{3} = \left( \text{bx} \right)^{3}\]
\[\textbf{б)}\ a^{7} \cdot y^{7} = \left( \text{ay} \right)^{7}\]
\[\textbf{в)}\ x^{2}y^{2}z^{2} = \left( \text{xyz} \right)^{2}\]
\[\textbf{г)}\ ( - a)^{3}b^{3} = ( - ab)^{3}\]
\[\textbf{д)}\ 32a^{5} = (2a)^{5}\]
\(е)\ 0,027m^{3} = (0,3m)^{3}\)
\[\boxed{\text{451\ (451).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ ab^{2} < 0\]
\[\textbf{б)}\ a^{3}b < 0\]
\[\textbf{в)}\ a^{2}b > 0\]
\[\textbf{г)}\ ab^{3} < 0\]
\[\textbf{д)} - ab^{3} > 0\]
\[\textbf{е)}\ a^{2} + b^{2} > 0\]
\[\textbf{ж)}\ (a + b)^{2} \geq 0\ \]
\[\textbf{з)}\ (a - b)^{2} > 0\]