Решебник по алгебре 7 класс Макарычев ФГОС Задание 1208

Авторы:
Год:2023
Тип:учебник

Задание 1208

Выбери издание
фгос Алгебра 7 класс Макарычев ФГОС, Теляковский, Миндюк Просвещение
 
Алгебра 7 класс Макарычев, Миндюк, Нешков Просвещение
Издание 1
фгос Алгебра 7 класс Макарычев ФГОС, Теляковский, Миндюк Просвещение

\[\boxed{\text{1208.}\text{\ }еуроки - ответы\ на\ пятёрку}\]

\[По\ условию\ задачи\ \text{a\ }от\ b\]

\[\ составляет\ 75\%,\ и\ от\ c - 40\%;\ \]

\[\ \text{c\ }больше\ b\ на\ 42.\]

\[Запишем\ систему:\]

\[\left\{ \begin{matrix} 0,75b = a\ \ \\ 0,4c = a\ \ \ \ \\ c - b = 42 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]

\[\ \left\{ \begin{matrix} b = \frac{a}{0,75}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ c = \frac{a}{0,4}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \frac{a}{0,4} - \frac{a}{0,75} = 42\ \ \ (1) \\ \end{matrix} \right.\ \]

\[(1)\frac{a}{0,4} - \frac{a}{0,75} = \frac{15a - 8a}{6} =\]

\[= \frac{7a}{6} = 42 \Longrightarrow a = \frac{42 \cdot 6}{7} = 36\]

\[b = \frac{36}{0,75} = 48\]

\[Ответ:a = 36;\ \ b = 48.\]

Издание 2
Алгебра 7 класс Макарычев, Миндюк, Нешков Просвещение
Содержание

\[\boxed{\text{1208\ (1208).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

При разложении многочлена на множители используем:

1. Формулу произведения разности двух выражений на их сумму – произведение разности двух выражений и их суммы равно разности квадратов этих выражений:

\[\left( \mathbf{a}\mathbf{-}\mathbf{b} \right)\left( \mathbf{a}\mathbf{+}\mathbf{b} \right)\mathbf{=}\mathbf{a}^{\mathbf{2}}\mathbf{-}\mathbf{b}^{\mathbf{2}}\mathbf{.}\]

2. Чтобы вынести общий множитель за скобки, надо каждый член многочлена разделить на их наибольший общий делитель и результат записать в скобках, а общий множитель за скобками:

\[\mathbf{ab + b}\mathbf{m}\mathbf{= b \bullet}\left( \mathbf{a + m} \right)\mathbf{.}\]

3. Способ группировки:

1) сгруппировать члены выражения так, чтобы слагаемые в каждой группе имели общий множитель;

2) в каждой группе вынести общий множитель за скобки;

3) образовавшийся общий для обеих групп множитель вынести за скобки.

\[\mathbf{ax + bx + 5}\mathbf{a + 5}\mathbf{b =}\left( \mathbf{ax + bx} \right)\mathbf{+}\left( \mathbf{5}\mathbf{a + 5}\mathbf{b} \right)\mathbf{=}\mathbf{x \bullet}\left( \mathbf{a + b} \right)\mathbf{+ 5 \bullet}\left( \mathbf{a + b} \right)\mathbf{=}\]

\[\mathbf{=}\left( \mathbf{a + b} \right)\left( \mathbf{x + 5} \right)\mathbf{.}\]

4. Формулу квадрата суммы:

Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого и второго выражений плюс квадрат второго выражения:

\[\mathbf{(}\mathbf{a}\mathbf{+}\mathbf{b}\mathbf{)}^{\mathbf{2}}\mathbf{=}\mathbf{a}^{\mathbf{2}}\mathbf{+}\mathbf{2}\mathbf{\text{ab}}\mathbf{+}\mathbf{b}^{\mathbf{2}}\mathbf{.}\]

Решение.

\[\textbf{а)}\ x^{8} + x^{4} - 2 =\]

\[= x^{8} + x^{4} - 1 - 1 =\]

\[= \left( x^{8} - 1 \right) + \left( x^{4} - 1 \right) =\]

\[\textbf{б)}\ a^{5} - a^{2} - a - 1 =\]

\[= \left( a^{5} - a \right) - \left( a^{2} + 1 \right) =\]

\[= a\left( a^{4} - 1 \right) - \left( a^{2} + 1 \right) =\]

\[= a\left( a^{2} - 1 \right)\left( a^{2} + 1 \right) - \left( a^{2} + 1 \right) =\]

\[= \left( a^{2} + 1 \right)\left( a\left( a^{2} - 1 \right) - 1 \right) =\]

\[= \left( a^{2} + 1 \right)\left( a^{3} - a - 1 \right)\]

\[\textbf{в)}\ n^{4} + 4 =\]

\[= n^{4} + 4 - 4n^{2} + 4n^{2} =\]

\[= \left( n^{4} + 4n^{2} + 4 \right) - 4n^{2} =\]

\[= \left( n^{2} + 2 \right)^{2} - (2n)^{2} =\]

\[= (n^{2} + 2 - 2n)(n^{2} + 2 + 2n)\]

\[\textbf{г)}\ n^{4} + n^{2} + 1 =\]

\[= n^{4} + n^{2} + 1 + n^{2} - n^{2} =\]

\[= \left( n^{4} + 2n^{2} + 1 \right) - n^{2} =\]

\[= \left( n^{2} + 1 \right)^{2} - n^{2} =\]

\[= \left( n^{2} + 1 - n \right)(n^{2} + 1 + n)\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам