\[\boxed{\text{1158.}\text{\ }еуроки - ответы\ на\ пятёрку}\]
\[a + b = 42 \Longrightarrow a = 42 - b.\]
\[Простые\ числа\ до\ 42:1,\ 2,\ 3,\ 5,\ \]
\[7,\ 11,\ 13,\ 17,\ 19,\ 23,\ 29,\ 31,\ 37,\ 41.\]
\[Тогда\ решением\ уравнения\]
\[\ являются\ пары\ чисел:\]
\[(5;37),\ (11;31),\ (13;29),\ \]
\[(19;23),\ (23;19),\ (29;13),\ \]
\[(31;11),\ (37;5).\]
\[\boxed{\text{1158\ (1158).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Системой линейных уравнений называют два и более уравнения с несколькими переменными (буквы x, y и т.д.), для которых необходимо найти общее решение.
Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство.
Координаты точки – это пара чисел, в которой на первом месте стоит абсцисса (x), а на втором – ордината точки (у): A (x; y).
Алгоритм решения систем линейных уравнений способом сложения:
1. Умножить (разделить) левую и правую части одного или обоих уравнений на некоторое число так, чтобы коэффициенты (число перед буквой) при одной из переменных в разных уравнениях стали противоположными числами:
\[\left\{ \begin{matrix} \mathbf{x + y = 10\ \ | \bullet ( - 4)\ \ \ \ } \\ \mathbf{4}\mathbf{x + 5}\mathbf{y = 44\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \mathbf{- 4}\mathbf{x}\mathbf{+}\left( \mathbf{- 4}\mathbf{y} \right)\mathbf{= - 40\ \ } \\ \mathbf{4}\mathbf{x}\mathbf{+ 5}\mathbf{y = 44\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
2. Сложить получившиеся уравнения почленно:
\[\left\{ \begin{matrix} \mathbf{- 4}\mathbf{x}\mathbf{+}\left( \mathbf{- 4}\mathbf{y} \right)\mathbf{=}\mathbf{- 40}\mathbf{\ } \\ \mathbf{4}\mathbf{x}\mathbf{+}\mathbf{5}\mathbf{y}\mathbf{=}\mathbf{44}\mathbf{\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }} \\ \end{matrix} \right.\ ( + )\]
\[\left\{ \begin{matrix} \mathbf{y = 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \mathbf{4}\mathbf{x}\mathbf{+ 5}\mathbf{y = 44\ } \\ \end{matrix} \right.\ \]
3. Подставить полученное значение в одно из уравнений и найти значение второй переменной:
\[\mathbf{x + 4 = 10}\]
\[\mathbf{x = 10 - 4}\]
\[\mathbf{x = 6}\]
4. Записать решение:
(6; 4)
Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному.
Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
Решение.
\[\left\{ \begin{matrix} x + y = 5\ \ \ \ \\ 2x - y = 16 \\ x + 2y = 3\ \ \ \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} x + y = 5 \\ 3x = 21\ \ \ \\ x + 2y = 3 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} y = 5 - x \\ x = 7\ \ \ \ \ \ \ \ \\ x + 2y = 3 \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} x = 7\ \ \ \ \ \ \ \ \ \ \\ y = - 2\ \ \ \ \ \ \\ x + 2y = 3 \\ \end{matrix} \right.\ \]
\[x + 2y = 3\ \]
\[7 - 2 \cdot 2 = 3 \Longrightarrow верно,\ значит,\ \]
\[графики\ пересекаются\]
\[в\ одной\ точке\ (7;\ - 2).\]