Решебник по алгебре 7 класс Макарычев ФГОС Задание 1068

Авторы:
Год:2023
Тип:учебник

Задание 1068

Выбери издание
фгос Алгебра 7 класс Макарычев ФГОС, Теляковский, Миндюк Просвещение
 
Алгебра 7 класс Макарычев, Миндюк, Нешков Просвещение
Издание 1
фгос Алгебра 7 класс Макарычев ФГОС, Теляковский, Миндюк Просвещение

\[\boxed{\text{1068.}\text{\ }еуроки - ответы\ на\ пятёрку}\]

\[12x - 5y = 132;\ \ если\ \ y = 0:\]

\[12x - 5 \cdot 0 = 132\]

\[12x = 132\]

\[x = 11\]

\[Ответ:абсцисса\ точки\ x = 11.\]

Издание 2
Алгебра 7 класс Макарычев, Миндюк, Нешков Просвещение

\[\boxed{\text{1068\ (1068).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Системой линейных уравнений называют два и более уравнения с несколькими переменными (буквы x, y и т.д.), для которых необходимо найти общее решение.

Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство.

Координаты точки – это пара чисел, в которой на первом месте стоит абсцисса (x), а на втором – ордината точки (у): A (x; y).

Алгоритм решения систем линейных уравнений методом подстановки:

1. Выразить из любого уравнения системы одну переменную через другую.

2. Подставить в другое уравнение системы вместо этой переменной равное ей выражение.

3. Решить получившиеся уравнение с одной переменной.

4. Найти соответствующее значение второй переменной.

\[\left\{ \begin{matrix} \mathbf{y}\mathbf{=}\mathbf{x + 2}\mathbf{\text{\ \ \ \ \ \ }} \\ \mathbf{4}\mathbf{x + 2}\mathbf{y}\mathbf{= 16} \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} \mathbf{y = x + 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \mathbf{4}\mathbf{x + 2 \cdot}\left( \mathbf{x + 2} \right)\mathbf{= 16} \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} \mathbf{y = x + 2\ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \mathbf{4}\mathbf{x + 2}\mathbf{x + 4 = 16} \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} \mathbf{y = x + 2} \\ \mathbf{6}\mathbf{x = 12\ \ \ } \\ \end{matrix} \right.\ \mathbf{\ }\]

\[\left\{ \begin{matrix} \mathbf{x =}\frac{\mathbf{12}}{\mathbf{6}}\mathbf{= 2} \\ \mathbf{y = 2 + 2\ \ \ \ } \\ \end{matrix} \right.\ \mathbf{\ }\]

\[\left\{ \begin{matrix} \mathbf{x = 2} \\ \mathbf{y = 4} \\ \end{matrix} \right.\ \]

(2; 4)

Числа с переменными (буквы a, x, y, b и т.д.) переносят в левую часть уравнения, а числа без переменных в правую часть. При переносе их знаки нужно поменять на противоположные.

Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.

Решение.

\[\textbf{а)}\ \left\{ \begin{matrix} y = x - 1\ \ \ \ \ \ \\ 5x + 2y = 16 \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} y = x - 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 5x + 2 \cdot (x - 1) = 16 \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} y = x - 1\ \ \ \ \ \ \ \ \ \ \ \ \ \\ 5x + 2x - 2 = 16 \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} y = x - 1 \\ 7x = 18\ \ \ \\ \end{matrix} \right.\ \ \]

\[\left\{ \begin{matrix} x = \frac{18}{7} = 2\frac{4}{7} \\ y = \frac{18}{7} - 1\ \ \ \ \\ \end{matrix} \right.\ \ \]

\[\left\{ \begin{matrix} x = 2\frac{4}{7}\text{\ \ \ \ \ \ \ \ \ \ \ } \\ y = \frac{11}{7} = 1\frac{4}{7} \\ \end{matrix} \right.\ \]

\[Ответ:\left( 2\frac{4}{7};\ \ 1\frac{4}{7} \right).\]

\[\textbf{б)}\ \left\{ \begin{matrix} x = 2 - y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 3x - 2y - 11 = 0 \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} x = 2 - y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2) \\ 3 \cdot (2 - y) - 2y - 11 = 0\ \ \ \ (1) \\ \end{matrix} \right.\ \]

\[(1)\ 6 - 3y - 2y - 11 = 0\]

\[- 5y = 5\]

\[y = - 1\]

\[(2)\ \ x = 2 - ( - 1)\]

\[x = 3\]

\[Ответ:(3;\ - 1).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам