Решебник по алгебре 7 класс Макарычев ФГОС Задание 1062

Авторы:
Год:2023
Тип:учебник

Задание 1062

Выбери издание
фгос Алгебра 7 класс Макарычев ФГОС, Теляковский, Миндюк Просвещение
 
Алгебра 7 класс Макарычев, Миндюк, Нешков Просвещение
Издание 1
фгос Алгебра 7 класс Макарычев ФГОС, Теляковский, Миндюк Просвещение

\[\boxed{\text{1062.}\text{\ }еуроки - ответы\ на\ пятёрку}\]

\[\text{A\ }(6;1):\ \ \ \]

\[6 - 2 \cdot 1 = 6 - 2 = 4 \Longrightarrow точка\ \]

\[\ \text{A\ }(6;1)\ принадлежит\ графику\]

\[уравнения\ x - 2y = 4;\]

\[\text{B\ }( - 6; - 5):\ \ \]

\[- 6 - 2 \cdot ( - 5) = - 6 + 10 =\]

\[= 4 \Longrightarrow точка\ \ \text{B\ }( - 6; - 5)\ \]

\[принадлежит\ графику\]

\[\ уравнения\ \ x - 2y = 4;\]

\[\text{C\ }(0; - 2):\ \ \]

\[0 - 2 \cdot ( - 2) = 0 + 4 =\]

\[= 4 \Longrightarrow точка\ \ \text{C\ }(0; - 2)\]

\[принадлежит\ графику\ \]

\[уравнения\ \ x - 2y = 4;\]

\[\text{D\ }( - 1;3):\ \ \]

\[- 1 - 2 \cdot 3 = - 1 - 6 =\]

\[= - 7 \neq 4 \Longrightarrow точка\ \ \text{D\ }( - 1;3)\]

\[не\ принадлежит\ графику\ \]

\[уравнения\ \ x - 2y = 4.\]

Издание 2
Алгебра 7 класс Макарычев, Миндюк, Нешков Просвещение
Содержание

\[\boxed{\text{1062\ (1062).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

Пояснение.

Системой линейных уравнений называют два и более уравнения с несколькими переменными (буквы x, y и т.д.), для которых необходимо найти общее решение.

Линейной функцией называется функция, которую можно задать формулой вида\(\ \mathbf{y = kx + b}\), где x – независимая переменная (переменная, которую можно изменить), k и b – некоторые числа.

Алгоритм нахождения количества системы равнений с 2 переменными (x и y):

1. Если\(\ \mathbf{k}_{\mathbf{1}}\mathbf{\neq}\mathbf{k}_{\mathbf{2}}\), то графики пересекаются и система имеет единственное решение.

2. Если\(\ \mathbf{k}_{\mathbf{1}}\mathbf{=}\mathbf{k}_{\mathbf{2}}\mathbf{,\ }\mathbf{b}_{\mathbf{1}}\mathbf{\neq}\mathbf{b}_{\mathbf{2}}\), то графики параллельны и система не имеет решений.

3. Если\(\ \mathbf{k}_{\mathbf{1}}\mathbf{=}\mathbf{k}_{\mathbf{2}}\mathbf{,\ }\mathbf{b}_{\mathbf{1}}\mathbf{=}\mathbf{b}_{\mathbf{2}}\), то графики совпадают и система имеет бесконечно много решений.

Свойства уравнений с двумя переменными:

1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному;

2. Если обе части уравнения умножить или разделить на одно и то же число, отличное от нуля, то получится уравнение, равносильное данному.

Решение.

\[\textbf{а)}\ \left\{ \begin{matrix} 4y - x = 12 \\ 3y + x = - 3 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} y = 3 + \frac{1}{4}\text{x\ \ } \\ y = - 1 - \frac{1}{3}x \\ \end{matrix} \right.\ ,\ \ \]

\[угловые\ коэффициенты\ \]

\[прямых\ \ \ k_{1} = \frac{1}{4}\text{\ \ }и\ \ k_{2} = - \frac{1}{3} -\]

\[различны \Rightarrow\]

\[эти\ прямые\ пересекаются,\ \]

\[система\ имеет\ единственное\ \]

\[решение.\]

\[угловые\ коэффициенты\ \]

\[прямых\ \ \ k_{1} = 3\ \ и\ \ k_{2} = \frac{1}{3} -\]

\[различны \Rightarrow\]

\[эти\ прямые\ пересекаются,\ \]

\[система\ имеет\ единственное\ \]

\[решение.\]

\[\textbf{в)}\ \left\{ \begin{matrix} 1,5x = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ - 3x + 2y = - 2 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} x = \frac{2}{3}\text{\ \ \ \ \ \ \ \ \ \ \ \ } \\ y = 1,5x - 2 \\ \end{matrix} \right.\ \]

\[параллельна\ оси\ Oy,\ значит,\ \]

\[эти\ прямые\ пересекаются\ и\ \]

\[имеют\ единственное\ решение.\ \]

\[\textbf{г)}\ \left\{ \begin{matrix} x + 2y = 3 \\ y = - 0,5x\ \\ \end{matrix} \right.\ \text{\ \ \ \ }\left\{ \begin{matrix} y = 1,5 - 0,5x \\ y = - 0,5x\ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ ,\]

\[угловые\ коэффициенты\ \]

\[прямых\ равные,\ значит,\ \]

\[они\ параллельны \Longrightarrow\]

\[система\ не\ имеет\ решений.\]

\[\textbf{д)}\ \left\{ \begin{matrix} 2x = 11 - 2y \\ 6y = 22 - 4x\ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} y = 5,5 - x\ \ \\ y = \frac{22}{6} - \frac{4}{6}x \\ \end{matrix} \right.\ ,\]

\[угловые\ коэффициенты\ \]

\[прямых\ \ \ k_{1} = - 1\ \ и\ \ k_{2} = - \frac{4}{6} -\]

\[различны \Rightarrow\]

\[эти\ прямые\ пересекаются,\ \]

\[система\ имеет\ единственное\ \]

\[решение.\]

\[\textbf{е)}\ \left\{ \begin{matrix} - x + 2y = 8 \\ x + 4y = 10\ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} y = 4 + 0,5x\ \ \ \ \ \\ y = 2,5 - 0,25x \\ \end{matrix} \right.\ ,\ \]

\[угловые\ коэффициенты\ \]

\[прямых\ \ \ k_{1} = 0,5\ \ и\ \ \]

\[k_{2} = - 0,25 - различны \Rightarrow\]

\[эти\ прямые\ пересекаются,\ \]

\[система\ имеет\ единственное\ \]

\[решение.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам