\[\boxed{\text{1035.}\text{\ }еуроки - ответы\ на\ пятёрку}\]
\[\textbf{а)}\ x³ + y³ + 2xy(x + y) =\]
\[= (x + y)\left( x^{2} - xy{+ y}^{2} \right) +\]
\[+ 2xy(x + y) =\]
\[= (x + y)\]
\[\left( x^{2} - xy + y^{2} + 2xy \right) =\]
\[= (x + y)(x^{2} + xy + y^{2})\]
\[\textbf{б)}\ x³ - y^{3} - 5x\left( x^{2} + xy + y^{2} \right) =\]
\[= (x - y)\left( x^{2} + xy + y^{2} \right) -\]
\[- 5x\left( x^{2} + xy + y^{2} \right) =\]
\[= \left( x^{2} + xy + y^{2} \right)(x - y - 5x) =\]
\[= (x^{2} + xy + y^{2})( - 4x - y)\]
\[\textbf{в)}\ 2b³ + a\left( a^{2} - 3b^{2} \right) = 2b³ +\]
\[+ a^{3} - 3ab^{2} = a^{3} - b^{3} +\]
\[+ 3b^{3} - 3ab^{2} =\]
\[= (a - b)\left( a^{2} + ab + b^{2} \right) -\]
\[- 3b^{2}(a - b) =\]
\[= (a - b)\]
\[\left( a^{2} + ab + b^{2} - 3b^{2} \right) =\]
\[= (a - b)(a^{2} + ab - 2b^{2})\]
\[\textbf{г)}\ p³ - 2p^{2} + 2p - 1 =\]
\[= (p - 1)\left( p^{2} + p + 1 \right) -\]
\[- 2p(p - 1) =\]
\[= (p - 1)\left( p^{2} + p + 1 - 2p \right) =\]
\[= (p - 1)(p^{2} - p + 1)\]
\[\textbf{д)}\ 8b³ + 6b² + 3b + 1 =\]
\[= (2b + 1)\left( 4b^{2} - 2b + 1 \right) +\]
\[+ 3b(2b + 1) =\]
\[= (2b + 1)\]
\[\left( 4b^{2} - 2b + 1 + 3b \right) =\]
\[= (2b + 1)(4b^{2} + b + 1)\]
\[\textbf{е)}\ a³ - 4a^{2} + 20a - 125 =\]
\[= (a - 5)\left( a^{2} + 5a - 25 \right) -\]
\[- 4a(a - 5) =\]
\[= (a - 5)\left( a^{2} + 5a + 25 - 4a \right) =\]
\[= (a - 5)(a^{2} + a + 25)\]
\[\boxed{\text{1035\ (1035).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Чтобы найти значение а, подставим в формулу значение точки (x; y) и решим уравнение.
Числа с переменными (буквы a, x, y, b и т.д.) переносят в левую часть уравнения, а числа без переменных в правую часть. При переносе их знаки нужно поменять на противоположные.
Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель.
Решение.
\[Если\ пара\ x = 2,\ y = 1\ \ \]
\[решение\ данного\ уравнения,\ \]
\[тогда\ можно\ подставить\ эти\ \]
\[значения\ в\ уравнение\ \]
\[и\ найти\ \ a:\]
\[ax + 2y = 8\]
\[a \cdot 2 + 2 \cdot 1 = 8\]
\[2a = 6\]
\[a = 3\]
\[Ответ:a = 3.\ \]