Условие:
1. Разложите на множители:
1) a^3+8b^3
2) x^2 y-36y^3
3)-5m^2+10mn-5n^2
4) 4ab-28b+8a-56
5) a^4-81
2. Упростите выражение a(a+2)(a-2)-(a-3)(a^2+3a+9).
3. Разложите на множители:
1) x-3y+x^2-9y^2
2) 9m^2+6mn+n^2-25
3) ab^5-b^5-ab^3+b^3
4) 1-x^2+10xy-25y^2
4. Решите уравнение:
1) 3x^3-12x=0
2) 49x^3+14x^2+x=0
3) x^3-5x^2-x+5=0
5. Докажите, что значение выражения 3^6+5^3 делится нацело на 14.
6. Известно, что a-b=6; ab=5. Найдите значение выражения (a+b)^2.
Решение:
\[\boxed{\mathbf{1}\mathbf{.}\mathbf{\ }}\]
\[1)\ a^{3} + 8b^{3} =\]
\[= (a + 2b)(a^{2} - 2ab + 4b^{2})\]
\[2)\ x^{2}y - 36y^{3} = y\left( x^{2} - 36y^{2} \right) =\]
\[= y(x - 6y)(x + 6y)\]
\[3) - 5m^{2} + 10mn - 5n^{2} =\]
\[= - 5 \cdot \left( m^{2} - 2mn + n^{2} \right) =\]
\[= - 5 \cdot (m - n)(m - n)\]
\[4)\ 4ab - 28b + 8a - 56 =\]
\[= 4b(a - 7) + 8(a - 7) =\]
\[= (a - 7)(4b + 8) =\]
\[= 4 \cdot (a - 7)(b + 2)\]
\[5)\ a^{4} - 81 = \left( a^{2} - 9 \right)\left( a^{2} + 9 \right) =\]
\[= (a - 3)(a + 3)(a^{2} + 9)\ \]
\[\boxed{\mathbf{2}\mathbf{.}\mathbf{\ }}\]
\[a(a + 2)(a - 2) - (a - 3)\left( a^{2} + 3a + 9 \right) =\]
\[= a\left( a^{2} - 4 \right) - \left( a^{3} - 27 \right) =\]
\[= a^{3} - 4a - a^{3} + 27 =\]
\[= - 4a + 27.\]
\[\boxed{\mathbf{3}\mathbf{.}\mathbf{\ }}\]
\[1)\ \ x - 3y + x^{2} - 9y^{2} =\]
\[= (x - 3y) + (x - 3y)(x + 3y) =\]
\[= (x - 3y)(1 + x + 3y)\]
\[2)\ 9m^{2} + 6mn + n^{2} - 25 =\]
\[= (3m + n)^{2} - 5^{2} =\]
\[= (3m + n - 5)(3m + n + 5)\]
\[3)\ ab^{5} - b^{5} - ab^{3} + b^{3} =\]
\[= b^{5}(a - 1) - b^{3}(a - 1) =\]
\[= (a - 1)\left( b^{5} - b^{3} \right) =\]
\[= b^{3}\left( b^{2} - 1 \right)(a - 1) =\]
\[= b^{3}(b - 1)(b + 1)(a - 1)\]
\[4)\ 1 - x^{2} + 10xy - 25y^{2} =\]
\[= 1 - \left( x^{2} - 10xy + 25y^{2} \right) =\]
\[= 1^{2} - (x - 5y)^{2} =\]
\[= (1 - x + 5y)(1 + x - 5y)\]
\[\boxed{\mathbf{4}\mathbf{.}\mathbf{\ }}\]
\[1)\ 3x^{3} - 12x = 0\]
\[3x\left( x^{2} - 4 \right) = 0\]
\[3x(x - 2)(x + 2) = 0\]
\[3x = 0;\ \ \ \ x - 2 = 0;\ \ \ x + 2 = 0\]
\[x = 0\ \ \ \ \ \ \ \ x = 2\ \ \ \ \ \ \ \ \ \ \ \ \ x = - 2\]
\[Ответ:x = 0;\ \ x = \pm 2.\]
\[2)\ 49x^{3} + 14x^{2} + x = 0\]
\[x\left( 49x^{2} + 14x + 1 \right) = 0\]
\[x(7x + 1)^{2} = 0\]
\[x = 0;\ \ \ \ \ 7x + 1 = 0\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 7x = - 1\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x = - \frac{1}{7}\]
\[Ответ:x = - \frac{1}{7};\ \ x = 0.\]
\[3)\ x^{3} - 5x^{2} - x + 5 = 0\]
\[x^{2}(x - 5) - (x - 5) = 0\]
\[(x - 5)\left( x^{2} - 1 \right) = 0\]
\[(x - 5)(x - 1)(x + 1) = 0\]
\[x - 5 = 0;\ \ \ x - 1 = 0;\ \ \ x + 1 = 0\]
\[x = 5\ \ \ \ \ \ \ \ \ \ \ x = 1\ \ \ \ \ \ \ \ \ \ \ x = - 1\]
\[Ответ:x = \pm 1;\ \ x = 5.\]
\[\boxed{\mathbf{5}\mathbf{.}\mathbf{\ }}\]
\[3^{6} + 5^{3}\ делится\ на\ 14.\]
\[3^{6} + 5^{3} = \left( 3^{2} \right)^{3} + 5^{3} =\]
\[= 9^{3} + 5^{3} =\]
\[= (9 + 5)(81 - 45 + 25) =\]
\[= 14 \cdot 61\]
\[Так\ как\ один\ из\ множителей\ \ \]
\[делится\ нацело\ на\ 14,\ то\ и\ все\ \]
\[выражение\ делится\ на\ 14.\]
\[Что\ и\ требовалось\ доказать.\]
\[\boxed{\mathbf{6}\mathbf{.}\mathbf{\ }}\]
\[a - b = 6;\ \ ab = 5;\ \ (a + b)^{2} = ?\]
\[(a + b)^{2} = (a - b)^{2} + 4\text{ab} =\]
\[= 6^{2} + 4 \cdot 5 = 36 + 20 = 56.\]