\[\boxed{\mathbf{7.}}\]
\[\textbf{а)}\ \sqrt{x} = x - 2\]
\[x = (x - 2)^{2}\]
\[x = x^{2} - 4x + 4\]
\[x^{2} - 5x + 4 = 0\]
\[x_{1} + x_{2} = 5;\ \ x_{1} \cdot x_{2} = 4\]
\[x_{1} = 1;\ \ x_{2} = 4.\]
\[Проверка:\]
\[\sqrt{1} = 1 - 2\]
\[1 = - 1\]
\[x = 1 - не\ является\ корнем.\]
\[\sqrt{4} = 4 - 2\]
\[2 = 2\]
\[x = 4 - корень\ уравнения.\]
\[Ответ:x = 4.\]
\[\textbf{б)}\ \sqrt{3x} = 2x - 3\]
\[3x = (2x - 3)^{2}\]
\[3x = 4x^{2} - 12x + 9\]
\[4x^{2} - 15x + 9 = 0\]
\[D = 225 - 144 = 81\]
\[x_{1} = \frac{15 + 9}{8} = 3;\]
\[x_{2} = \frac{15 - 9}{8} = \frac{6}{8} = \frac{3}{4}.\]
\[Проверка:\]
\[\sqrt{3 \cdot 3} = 2 \cdot 3 - 3\]
\[3 = 3\]
\[x = 3 - является\ корнем.\]
\[\sqrt{3 \cdot \frac{3}{4}} = 2 \cdot \frac{3}{4} - 3\]
\[\frac{3}{2} = \frac{1}{2} - 3\]
\[\frac{3}{2} = - \frac{3}{2}\]
\[x = \frac{3}{4} - не\ является\ корнем.\]
\[Ответ:x = 3.\]
\[\textbf{в)}\ \sqrt{2x - 1} = x\]
\[2x - 1 = x^{2}\]
\[x^{2} - 2x + 1 = 0\]
\[(x - 1)^{2} = 0\]
\[x - 1 = 0\]
\[x = 1.\]
\[Проверка:\]
\[\sqrt{2 \cdot 1 - 1} = 1\]
\[1 = 1\]
\[x = 1 - корень.\]
\[Ответ:x = 1.\]
\[\textbf{г)}\ \sqrt{3x - 2} = x\]
\[3x - 2 = x^{2}\]
\[x^{2} - 3x + 2 = 0\]
\[x_{1} + x_{2} = 3;\ \ x_{1} \cdot x_{2} = 2\]
\[x_{1} = 1;\ \ x_{2} = 2.\]
\[Проверка:\]
\[\sqrt{3 \cdot 1 - 2} = 1\]
\[1 = 1\]
\[x = 1 - корень.\]
\[\sqrt{3 \cdot 2 - 2} = 2\]
\[\sqrt{4} = 2\]
\[x = 2 - корень.\]
\[Ответ:x = 1;x = 2.\]