\[\boxed{\mathbf{41.}}\]
\[\textbf{а)}\ \sqrt{\log_{2}(x + 2) + \log_{2}(x + 1)} =\]
\[= \sqrt{\log_{2}{(x - 2)} + \log_{2}{(2x - 1)}}\]
\[\log_{2}(x + 2) + \log_{2}(x + 1) =\]
\[= \log_{2}{(x - 2)} + \log_{2}{(2x - 1)}\]
\[\log_{2}\left( (x + 2)(x + 1) \right) =\]
\[= \log_{2}\left( (x - 2)(2x - 1) \right)\]
\[x > 2.\]
\[(x + 2)(x + 1) =\]
\[= (x - 2)(2x - 1)\]
\[x^{2} + 2x + x + 2 =\]
\[= 2x^{2} - 4x - x + 2\]
\[x^{2} - 8x = 0\]
\[x(x - 8) = 0\]
\[x = 0 < 2 - не\ корень.\]
\[x = 8.\]
\[Ответ:x = 8.\]
\[\textbf{б)}\ \sqrt{\log_{3}(2x - 1) + \log_{3}(x - 4)} =\]
\[= \sqrt{2\log_{3}{(x - 2)}}\]
\[\log_{3}(2x - 1) + \log_{3}(x - 4) =\]
\[= 2\log_{3}{(x - 2)}\]
\[\log_{3}\left( (2x - 1)(x - 4) \right) =\]
\[= \log_{3}(x - 2)^{2}\]
\[x > 4.\]
\[(2x - 1)(x - 4) = (x - 2)^{2}\]
\[2x^{2} - x - 8x + 4 = x^{2} - 4x + 4\]
\[x^{2} - 5x = 0\]
\[x(x - 5) = 0\]
\[x = 0 < 4 - не\ корень;\]
\[x = 5.\]
\[Ответ:x = 5.\]
\[\textbf{в)}\ \sqrt{\log_{2}{\sin x} + 2} =\]
\[= \sqrt{1 - \log_{2}{\cos x}}\]
\[\log_{2}{\sin x} + 2 = 1 - \log_{2}{\cos x}\]
\[\log_{2}{\sin x - \log_{2}{\cos x}} = - 1\]
\[\log_{2}\left( \sin x\cos x \right) = \log_{2}\frac{1}{2}\]
\[\sin x\cos x = \frac{1}{2}\]
\[2\sin x\cos x = 1\]
\[\sin{2x} = 1\]
\[2x = \frac{\pi}{2} + 2\pi n\]
\[x = \frac{\pi}{4} + \pi n.\]
\[Проверка\ показала,\ что\ x =\]
\[= \frac{\pi}{4} + \pi n - корень\ уравнения.\]
\[Ответ:x = \frac{\pi}{4} + \pi n.\]
\[\textbf{г)}\ \sqrt{\log_{2}\left( - \cos x \right) + 3} =\]
\[= \sqrt{2 - \log_{2}\left( - \sin x \right)}\]
\[\log_{2}\left( - \cos x \right) + 3 =\]
\[= 2 - \log_{2}\left( - \sin x \right)\]
\[\log_{2}\left( - \cos x \right) + \log_{2}\left( - \sin x \right) =\]
\[= - 1\]
\[\log_{2}\left( \left( - \sin x \right)\left( - \cos x \right) \right) = \log_{2}\frac{1}{2}\]
\[\sin x\cos x = \frac{1}{2}\]
\[2\sin x\cos x = 1\]
\[\sin{2x} = 1\]
\[2x = \frac{\pi}{2} + 2\pi n\]
\[x_{1} = \frac{\pi}{4} + \pi n;\]
\[x_{2} = - \frac{3\pi}{4} + 2\pi n.\]
\[Проверка\ показала,\ что\ корень\ \]
\[исходного\ уравнения\ x_{2}.\]
\[Ответ:x = - \frac{3\pi}{4} + 2\pi n.\]