\[\boxed{\mathbf{40.}}\]
\[\textbf{а)}\log_{2}(x + 1) = \log_{4}(5x + 1)\]
\[\log_{2}(x + 1) = \frac{1}{2}\log_{2}(5x + 1)\]
\[\log_{2}(x + 1) = \log_{2}(5x + 1)^{\frac{1}{2}}\]
\[\log_{2}(x + 1) = \log_{2}\sqrt{5x + 1}\]
\[x > - 0,2.\]
\[x + 1 = \sqrt{5x + 1}\]
\[(x + 1)^{2} = 5x + 1\]
\[x^{2} + 2x + 1 = 5x + 1\]
\[x^{2} - 3x = 0\]
\[x(x - 3) = 0\]
\[x = 0;\ \ x = 3.\]
\[Проверка.\]
\[x = 0:\]
\[\log_{2}1 = \log_{4}1\]
\[0 = 0.\]
\[x = 3:\]
\[\log_{2}4 = \log_{4}16\]
\[2 = 2.\]
\[Ответ:x = 0;\ \ x = 3.\]
\[\textbf{б)}\log_{3}(x - 2) = \log_{9}(3x - 6)\]
\[\log_{3}(x - 2) = \frac{1}{2}\log_{3}(3x - 6)\]
\[\log_{3}(x - 2) = \log_{3}(3x - 6)^{\frac{1}{2}}\]
\[\log_{3}(x - 2) = \log_{3}\sqrt{3x - 6}\]
\[x > 2.\]
\[x - 2 = \sqrt{3x - 6}\]
\[(x - 2)^{2} = 3x - 6\]
\[x^{2} - 4x + 4 - 3x + 6 = 0\]
\[x^{2} - 7x + 10 = 0\]
\[x_{1} + x_{2} = 7;\ \ x_{1} \cdot x_{2} = 10\]
\[x_{1} = 2\ (не\ корень);\]
\[x_{2} = 5.\]
\[Ответ:x = 5.\]