\[\boxed{\mathbf{38.}}\]
\[\textbf{а)}\lg{2x} - \lg(x + 4) = \lg{0,4}\]
\[\lg{2x} = \lg{0,4} + \lg{(x + 4)}\]
\[\lg{0,4(x + 4)} = \lg 2\]
\[x > 0.\]
\[0,4(x + 4) = 2\]
\[0,4x + 1,6 = 2\]
\[0,4x = 0,4\]
\[x = 1.\]
\[Ответ:x = 1.\]
\[\textbf{б)}\lg{(x - 4)} + \lg{(x - 6)} = \lg 8\]
\[\lg\left( (x - 4)(x - 6) \right) = 8\]
\[x - 6 > 0\]
\[x > 6.\]
\[(x - 4)(x - 6) = 8\]
\[x^{2} - 4x - 6x + 24 - 8 = 0\]
\[x^{2} - 10x + 16 = 0\]
\[D_{1} = 25 - 16 = 9\]
\[x_{1} = 5 + 3 = 8;\]
\[x_{2} = 5 - 3 = 3 < 6 - не\ корень.\]
\[Ответ:x = 8.\]
\[\textbf{в)}\lg(x + 5) + \lg(x - 4) =\]
\[= \lg{(x + 16)}\]
\[\lg\left( (x + 5)(x - 4) \right) = \lg(x + 16)\]
\[x - 4 > 0\]
\[x > 4.\]
\[(x + 5)(x - 4) = x + 16\]
\[x^{2} + 5x - 4x - 20 - x - 16 = 0\]
\[x^{2} - 36 = 0\]
\[x^{2} = 36\]
\[x_{1} = - 6 < 4\ (не\ корень).\]
\[x_{2} = 6.\]
\[Ответ:x = 6.\]
\[\textbf{г)}\lg(x - 3) + \lg(x + 4) =\]
\[= \lg(7x - 20)\]
\[\lg\left( (x - 3)(x + 4) \right) =\]
\[= \lg(7x - 20)\]
\[x - 3 > 0\]
\[x > 3.\]
\[(x - 3)(x + 4) = 7x - 20\]
\[x^{2} - 3x + 4x - 12 - 7x + 20 = 0\]
\[x^{2} - 6x + 8 = 0\]
\[D_{1} = 9 - 8 = 1\]
\[x_{1} = 3 + 1 = 4;\]
\[x_{2} = 3 - 1 =\]
\[= 2 < 3\ (не\ корень).\]
\[Ответ:x = 4.\]