\[\boxed{\mathbf{37.}}\]
\[\textbf{а)}\ \sqrt{x - 5}\sqrt{x - 6} = \sqrt{x - 2}\]
\[(x - 5)(x - 6) = x - 2\]
\[x^{2} - 5x - 6x + 30 - x + 2 = 0\]
\[x^{2} - 12x + 32 = 0\]
\[D_{1} = 36 - 32 = 4\]
\[x_{1} = 6 + 2 = 8;\]
\[x_{2} = 6 - 2 = 4.\]
\[Проверка.\]
\[x = 8:\]
\[\sqrt{8 - 5}\sqrt{8 - 6} = \sqrt{8 - 2}\]
\[\sqrt{3} \cdot \sqrt{2} = \sqrt{6}.\]
\[x = 4:\]
\[\sqrt{4 - 5} < 0 - не\ корень.\]
\[Ответ:x = 8.\]
\[\textbf{б)}\ \sqrt{x - 3}\sqrt{x - 7} = \sqrt{x + 3}\]
\[x > 7;\]
\[(x - 3)(x - 7) = x + 3\]
\[x^{2} - 3x - 7x + 21 - x - 3 = 0\]
\[x^{2} - 11x + 18 = 0\]
\[x_{1} + x_{2} = 11;\ \ x_{1} \cdot x_{2} = 18\]
\[x_{1} = 2 < 7 - не\ корень.\]
\[x_{2} = 9.\]
\[Ответ:x = 9.\]
\[\textbf{в)}\ \frac{\sqrt{7x - 21}}{\sqrt{x + 2}} = \frac{\sqrt{5x - 17}}{2}\]
\[\frac{7x - 21}{x + 2} = \frac{5x - 17}{4}\]
\[x \neq - 2;\ \ x > 3,4.\]
\[4(7x - 21) = (x + 2)(5x - 17)\]
\[28x - 84 =\]
\[= 5x^{2} + 10x - 17x - 34\]
\[5x^{2} - 35x + 50 = 0\ \ \ \ |\ :5\]
\[x^{2} - 7x + 10 = 0\]
\[x_{1} + x_{2} = 7;\ \ x_{1} \cdot x_{2} = 10\]
\[x_{1} = 2 < 3,4 - не\ корень;\ \ \ \]
\[x_{2} = 5.\]
\[Ответ:x = 5.\]
\[\textbf{г)}\ \frac{\sqrt{3x - 7}}{\sqrt{x + 3}} = \sqrt{3 - 4x}\]
\[x > \frac{7}{3} > 2\frac{1}{3};\]
\[x < \frac{3}{4}.\]
\[\frac{3x - 7}{x + 3} = 3 - 4x;\ \ x \neq - 3\]
\[3x - 7 = (x + 3)(3 - 4x)\]
\[3x - 7 = 3x + 9 - 4x^{2} - 12x\]
\[4x^{2} + 12x - 16 = 0\ \ |\ :4\]
\[x^{2} + 3x - 4 = 0\]
\[x_{1} + x_{2} = - 3;\]
\[x_{1} \cdot x_{2} = - 4;\]
\[x_{1} = 1 - не\ корень;\ \ \]
\[x_{2} = - 4\ (не\ подходит).\]
\[Ответ:нет\ корней.\]