\[\boxed{\mathbf{17.}}\]
\[\textbf{а)}\log_{3}{(2 \cdot 3^{x} - 5)} = \log_{3}\left( 3^{x} + 4 \right)\]
\[2 \cdot 3^{x} - 5 = 3^{x} + 4\]
\[3^{x} = 9\]
\[3^{x} = 3^{2}\]
\[x = 2.\]
\[Проверка:\]
\[\log_{3}\left( 2 \cdot 3^{2} - 5 \right) = \log_{3}\left( 3^{2} + 4 \right)\]
\[\log_{3}13 = \log_{3}13\]
\[x = 2 - корень.\]
\[Ответ:x = 2.\]
\[\textbf{б)}\log_{7}\left( 2 \cdot 4^{x} - 3 \right) = \log_{7}\left( 4^{x} + 1 \right)\]
\[2 \cdot 4^{x} - 3 = 4^{x} + 1\]
\[4^{x} = 4\]
\[x = 1.\]
\[Проверка:\]
\[\log_{7}(2 \cdot 4 - 3) = \log_{7}{(4 + 1)}\]
\[\log_{7}5 = \log_{7}5\]
\[x = 1 - корень.\]
\[Ответ:x = 1.\]
\[\textbf{в)}\log_{5}\left( 4^{x} - 3 \cdot 2^{x} \right) =\]
\[= \log_{5}\left( 3 \cdot 2^{x} - 8 \right)\]
\[4^{x} - 3 \cdot 2^{x} = 3 \cdot 2^{x} - 8\]
\[\left( 2^{x} \right)^{2} - 6 \cdot 2^{x} + 8 = 0\]
\[2^{x} = t:\]
\[t^{2} - 6t + 8 = 0\]
\[D_{1} = 9 - 8 = 1\]
\[t_{1} = 3 + 1 = 4;\]
\[t_{2} = 3 - 1 = 2.\]
\[1)\ 2^{x} = 4\]
\[2^{x} = 2^{2}\]
\[x = 2.\]
\[2)\ 2^{x} = 2\]
\[x = 1.\]
\[Проверка:\]
\[\log_{5}\left( 4^{2} - 3 \cdot 2^{2} \right) =\]
\[= \log_{5}\left( 3 \cdot 2^{2} - 8 \right)\]
\[\log_{5}4 = \log_{5}4\]
\[x = 2 - корень.\]
\[\log_{5}(4 - 3 \cdot 2) = \log_{5}(3 \cdot 2 - 8)\]
\[\log_{5}( - 2) = \log_{5}( - 2)\]
\[a < 0;\]
\[x = 1 - не\ корень.\]
\[Ответ:x = 2.\]
\[\textbf{г)}\log_{4}\left( 9^{x} - 5 \cdot 3^{x} \right) =\]
\[= \log_{4}\left( 7 \cdot 3^{x} - 27 \right)\]
\[9^{x} - 5 \cdot 3^{x} = 7 \cdot 3^{x} - 27\]
\[\left( 3^{x} \right)^{2} - 12 \cdot 3^{x} + 27 = 0\]
\[3^{x} = t:\]
\[t^{2} - 12t + 27 = 0\]
\[D_{1} = 36 - 27 = 9\]
\[t_{1} = 6 + 3 = 9;\]
\[t_{2} = 6 - 3 = 3.\]
\[1)\ 3^{x} = 9\]
\[3^{x} = 3^{2}\]
\[x = 2.\]
\[2)\ 3^{x} = 3\]
\[x = 1.\]
\[Проверка:\]
\[\log_{4}\left( 9^{2} - 5 \cdot 3^{2} \right) =\]
\[= \log_{4}\left( 7 \cdot 3^{2} - 27 \right)\]
\[\log_{4}36 = \log_{4}36\]
\[x = 2 - корень.\]
\[\log_{4}(9 - 5 \cdot 3) =\]
\[= \log_{4}(7 \cdot 3 - 27)\]
\[\log_{4}( - 6) = \log_{4}( - 6)\]
\[x < 0;\]
\[x = 1 - не\ корень.\]
\[Ответ:x = 2.\]