\[\boxed{\mathbf{16.}}\]
\[\textbf{а)}\log_{11}\left( \frac{x + 20}{x} \right) = \frac{\log_{2}41}{\log_{2}11}\]
\[\log_{11}\left( \frac{x + 20}{x} \right) = \log_{11}41\]
\[\frac{x + 20}{x} = 41\]
\[41x = x + 20;\ \ \ x \neq 0\]
\[40x = 20\]
\[x = \frac{1}{2}.\]
\[Проверка:\]
\[\log_{11}\left( \left( \frac{1}{2} + 20 \right) \cdot 2 \right) = \log_{11}41\]
\[\log_{11}41 = \log_{11}41\]
\[x = \frac{1}{2} - корень.\]
\[Ответ:x = \frac{1}{2}.\]
\[\textbf{б)}\log_{13}\left( \frac{x + 11}{x} \right) = \frac{\log_{3}23}{\log_{3}13}\]
\[\log_{13}\left( \frac{x + 11}{x} \right) = \log_{13}23\]
\[\frac{x + 11}{x} = 23\]
\[23x = x + 11;\ \ x \neq 0\]
\[22x = 11\]
\[x = \frac{1}{2}.\]
\[Проверка:\]
\[\log_{13}\left( \left( \frac{1}{2} + 11 \right) \cdot 2 \right) = \log_{13}23\]
\[\log_{13}23 = \log_{13}23\]
\[x = \frac{1}{2} - корень.\]
\[Ответ:x = \frac{1}{2}.\]
\[\textbf{в)}\log_{5}\left( \frac{x + 10}{x} \right) = \frac{\log_{11}21}{\log_{11}5}\]
\[\log_{5}\left( \frac{x + 10}{x} \right) = \log_{5}21\]
\[\frac{x + 10}{x} = 21\]
\[21x = x + 10;\ \ x \neq 0\]
\[20x = 10\]
\[x = \frac{1}{2}.\]
\[Проверка:\]
\[\log_{5}\left( \left( \frac{1}{2} + 10 \right) \cdot 2 \right) = \log_{5}21\]
\[\log_{5}21 = \log_{5}21\]
\[x = \frac{1}{2} - корень.\]
\[Ответ:x = \frac{1}{2}.\]
\[\textbf{г)}\log_{7}\left( \frac{x + 15}{x} \right) = \frac{\log_{13}31}{\log_{13}7}\]
\[\log_{7}\left( \frac{x + 15}{x} \right) = \log_{7}31\]
\[\frac{x + 15}{x} = 31\]
\[31x = x + 15;\ \ x \neq 0\]
\[30x = 15\]
\[x = \frac{1}{2}.\]
\[Проверка:\]
\[\log_{7}\left( \left( \frac{1}{2} + 15 \right) \cdot 2 \right) = \log_{7}31\]
\[\log_{7}31 = \log_{7}31\]
\[x = \frac{1}{2} - корень.\]
\[Ответ:x = \frac{1}{2} - корень.\]