\[\boxed{\mathbf{11.}}\]
\[\textbf{а)}\ \left| x^{2} - 4x + 2 \right| = x^{2} - 6x + 10\]
\[\sqrt{\left( x^{2} - 4x + 2 \right)^{2}} = x^{2} - 6x + 10\]
\[\left( x^{2} - 4x + 2 \right)^{2} = \left( x^{2} - 6x + 10 \right)^{2}\]
\[(2x - 8)\left( 2x^{2} - 10x + 12 \right) = 0\]
\[4 \cdot (x - 4)\left( x^{2} - 5x + 6 \right) = 0\]
\[1)\ x - 4 = 0\]
\[x = 4.\]
\[2)\ x^{2} - 5x + 6 = 0\]
\[x_{1} + x_{2} = 5;\ \ x_{1} \cdot x_{2} = 6\]
\[x_{1} = 2;\ \ x_{2} = 3.\]
\[Проверка:\]
\[|16 - 16 + 2| = 16 - 24 + 10\]
\[|2| = 2\]
\[2 = 2\]
\[x = 4 - корень.\]
\[|4 - 8 + 2| = 4 - 12 + 10\]
\[| - 2| = 2\]
\[2 = 2\]
\[x = 2 - корень.\]
\[|9 - 12 + 2| = 9 - 18 + 10\]
\[| - 1| = 1\]
\[1 = 1\]
\[x = 3 - корень.\]
\[Ответ:x = 2;3;4.\]
\[\textbf{б)}\ \left| x^{2} - 2x - 2 \right| = x^{2} - 4x + 6\]
\[\sqrt{\left( x^{2} - 2x - 2 \right)^{2}} = x^{2} - 4x + 6\]
\[\left( x^{2} - 2x - 2 \right)^{2} = \left( x^{2} - 4x + 6 \right)\]
\[\left( x^{2} - 2x - 2 \right)^{2} - \left( x^{2} - 4x + 6 \right) = 0\]
\[(2x - 8)\left( 2x^{2} - 6x + 4 \right) = 0\]
\[4 \cdot (x - 4)\left( x^{2} - 3x + 2 \right) = 0\]
\[1)\ x - 4 = 0\]
\[x = 4.\]
\[2)\ x^{2} - 3x + 2 = 0\]
\[x_{1} + x_{2} = 3;\ \ x_{1} \cdot x_{2} = 2\]
\[x_{1} = 2;\ \ x_{2} = 1.\]
\[Проверка:\]
\[|16 - 8 - 2| = 16 - 16 + 6\]
\[|6| = 6\]
\[6 = 6\]
\[x = 4 - корень.\]
\[|4 - 4 - 2| = 4 - 8 + 6\]
\[| - 2| = 2\]
\[2 = 2\]
\[x = 2 - корень.\]
\[|1 - 2 - 2| = 1 - 4 + 6\]
\[| - 3| = 3\]
\[3 = 3\]
\[x = 1 - корень.\]
\[Ответ:x = 1;2;4.\]
\[\textbf{в)}\ \left| 2\lg x - 3 \right| = 3\lg x - 2\]
\[\sqrt{\left( 2\lg x - 3 \right)^{2}} = 3\lg x - 2\]
\[\left( 2\lg x - 3 \right)^{2} = \left( 3\lg x - 2 \right)^{2}\]
\[\left( 2\lg x - 3 \right)^{2} - \left( 3\lg x - 2 \right)^{2} = 0\]
\[\left( - \lg x - 1 \right)\left( 5\lg x - 5 \right) = 0\]
\[- 5\left( \lg x + 1 \right)\left( \lg x - 1 \right) = 0\]
\[1)\ \lg x + 1 = 0\]
\[\lg x = - 1\ \]
\[x = 10^{- 1} = \frac{1}{10}.\]
\[2)\ \lg x - 1 = 0\]
\[\lg x = 1\]
\[x = 10.\]
\[Проверка:\]
\[\left| 2\lg\frac{1}{10} - 3 \right| = 3\lg\frac{1}{10} - 2\]
\[\left| 2 \cdot ( - 1) - 3 \right| = 3 \cdot ( - 1) - 2\]
\[| - 5| \neq - 5\]
\[x = \frac{1}{10} - не\ корень.\]
\[\left| 2\lg 10 - 3 \right| = 3\lg 10 - 2\]
\[|2 \cdot 1 - 3| = 3 \cdot 1 - 2\]
\[| - 1| = 1\]
\[1 = 1\]
\[x = 10 - корень.\]
\[Ответ:10.\]
\[\textbf{г)}\ \left| 3\lg x - 4 \right| = 2\lg x - 1\]
\[\sqrt{\left( 3\lg x - 4 \right)^{2}} = 2\lg x - 1\]
\[\left( 3\lg x - 4 \right)^{2} = \left( 2\lg x - 1 \right)^{2}\]
\[\left( 3\lg x - 4 \right)^{2} - \left( 2\lg x - 1 \right)^{2} = 0\]
\[\left( \lg x - 3 \right)\left( 5\lg x - 5 \right) = 0\]
\[5\left( \lg x - 3 \right)\left( \lg x - 1 \right) = 0\]
\[1)\ \lg x = 3\]
\[x = 1000.\]
\[2)\ \lg x = 1\]
\[x = 10.\]
\[Проверка:\]
\[\left| 3\lg 1000 - 4 \right| = 2\lg 1000 - 1\]
\[|3 \cdot 3 - 4| = 2 \cdot 3 - 1\]
\[|5| = 5\]
\[5 = 5\]
\[x = 1000 - корень.\]
\[\left| 3\lg 10 - 4 \right| = 2\lg 10 - 1\]
\[|3 \cdot 1 - 4| = 2 \cdot 1 - 1\]
\[| - 1| = 1\]
\[1 = 1\]
\[x = 10 - корень.\]
\[Ответ:x = 10;x = 1000.\]
\[\textbf{д)}\ \left| 2^{x + 1} - 7 \right| = 5 - 2^{x}\]
\[\sqrt{\left( 2^{x + 1} - 7 \right)^{2}} = 5 - 2^{x}\]
\[\left( 2^{x + 1} - 7 \right)^{2} = \left( 5 - 2^{x} \right)^{2}\]
\[\left( 2^{x + 1} - 7 \right)^{2} - \left( 5 - 2^{x} \right)^{2} = 0\]
\[\left( 3 - 12 \cdot 2^{- x} \right)\left( 1 - 2 \cdot 2^{- x} \right) = 0\]
\[1)\ 3 - 12 \cdot 2^{- x} = 0\ \ |\ :3\]
\[1 - 4 \cdot 2^{- x} = 0\]
\[4 \cdot 2^{- x} = 1\]
\[2^{2} \cdot 2^{- x} = 2^{0}\]
\[2 - x = 0\]
\[x = 2.\]
\[2)\ 1 - 2 \cdot 2^{- x} = 0\]
\[2 \cdot 2^{- x} = 1\]
\[2^{1} \cdot 2^{- x} = 2^{0}\]
\[1 - x = 0\]
\[x = 1.\]
\[Проверка:\]
\[\left| 2^{2 + 1} - 7 \right| = 5 - 2^{2}\]
\[\left| 2^{3} - 7 \right| = 5 - 4\]
\[|8 - 7| = 1\]
\[1 = 1\]
\[x = 2 - корень.\]
\[\left| 2^{1 + 1} - 7 \right| = 5 - 2^{1}\]
\[\left| 2^{2} - 7 \right| = 5 - 2\]
\[|4 - 7| = 3\]
\[| - 3| = 3\]
\[3 = 3\]
\[x = 1 - корень.\]
\[Ответ:x = 1;x = 2.\]
\[\textbf{е)}\ \left| 2^{x + 1} - 7 \right| = 2^{x} + 1\]
\[\sqrt{\left( 2^{x + 1} - 7 \right)^{2}} = 2^{x} + 1\]
\[\left( 2^{x + 1} - 7 \right)^{2} = \left( 2^{x} + 1 \right)^{2}\]
\[\left( 2^{x + 1} - 7 \right)^{2} - \left( 2^{x} + 1 \right)^{2} = 0\]
\[\left( 1 - 8 \cdot 2^{- x} \right)\left( 3 - 6 \cdot 2^{- x} \right) = 0\]
\[1)\ 1 - 8 \cdot 2^{- x} = 0\]
\[2^{3} \cdot 2^{- x} = 1\]
\[2^{3} \cdot 2^{- x} = 2^{0}\]
\[3 - x = 0\]
\[x = 3.\]
\[2)\ 3 - 6 \cdot 2^{- x} = 0\ \ \ |\ :3\]
\[1 - 2 \cdot 2^{- x} = 0\]
\[2^{1} \cdot 2^{- x} = 1\]
\[2^{1} \cdot 2^{- x} = 2^{0}\]
\[1 - x = 0\]
\[x = 1.\]
\[Проверка:\]
\[\left| 2^{3 + 1} - 7 \right| = 2^{3} + 1\]
\[\left| 2^{4} - 7 \right| = 8 + 1\]
\[|16 - 7| = 9\]
\[|9| = 9\]
\[9 = 9\]
\[x = 3 - корень.\]
\[\left| 2^{1 + 1} - 7 \right| = 2^{1} + 1\]
\[\left| 2^{2} - 7 \right| = 2 + 1\]
\[| - 3| = 3\]
\[3 = 3\]
\[x = 1 - корень.\]
\[Ответ:x = 1;x = 3.\]