\[\boxed{\mathbf{8.}}\]
\[\textbf{а)}\ \left( 5sin^{2}x - 4 \right)^{11} = \left( \text{si}n^{2}x - 1 \right)^{11}\]
\[5sin^{2}x - 4 = \sin^{2}x - 1\]
\[4\sin^{2}x = 3\]
\[\sin^{2}x = \frac{3}{4}\]
\[\frac{1 - \cos{2x}}{2} = \frac{3}{4}\]
\[1 - \cos{2x} = \frac{3}{2}\]
\[- \cos{2x} = \frac{1}{2}\]
\[\cos{2x} = - \frac{1}{2}\]
\[2x = \pm \arccos\left( - \frac{1}{2} \right) + 2\pi n\]
\[\arccos\left( - \frac{1}{2} \right) = \pi - \arccos\frac{1}{2} =\]
\[= \pi - \frac{\pi}{3} = \frac{2\pi}{3};\]
\[2x = \pm \frac{2\pi}{3} + 2\pi n\]
\[x = \pm \frac{\pi}{3} + \pi n.\]
\[\textbf{б)}\ \left( 5\cos^{2}x - 1 \right)^{7} =\]
\[= \left( \cos^{2}x + 1 \right)^{7}\]
\[5\cos^{2}x - 1 = \cos^{2}x + 1\]
\[4\cos^{2}x = 2\]
\[\cos^{2}x = \frac{1}{2}\]
\[\frac{1 + \cos{2x}}{2} = \frac{1}{2}\]
\[1 + \cos{2x} = 1\]
\[\cos{2x} = 0\]
\[2x = \frac{\pi}{2} + \pi n\]
\[x = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[\textbf{в)}\ \left( 4^{x} - 5 \right)^{99} = \left( 3 \cdot 2^{x} - 1 \right)^{99}\]
\[4^{x} - 5 = 3 \cdot 2^{x} - 1\]
\[\left( 2^{2} \right)^{x} - 3 \cdot 2^{x} - 4 = 0\]
\[\left( 2^{x} \right)^{2} - 3 \cdot 2^{x} - 4 = 0\]
\[t = 2^{x}:\]
\[t^{2} - 3t - 4 = 0\]
\[t_{1} + t_{2} = 3;\ \ t_{1} \cdot t_{2} = - 4\]
\[t_{1} = 4;\ \ \ t_{2} = - 1\]
\[1)\ 2^{x} = - 1\]
\[нет\ корней.\]
\[2)\ 2^{x} = 4\]
\[2^{x} = 2^{2}\]
\[x = 2.\]
\[Ответ:x = 2.\]
\[\textbf{г)}\ \left( 9^{x} - 1 \right)^{95} = \left( 3^{x} + 5 \right)^{95}\]
\[9^{x} - 1 = 3^{x} + 5\]
\[\left( 3^{2} \right)^{x} - 1 - 3^{x} - 5 = 0\]
\[\left( 3^{x} \right)^{2} - 3^{x} - 6 = 0\]
\[t = 3^{x}:\]
\[t^{2} - t - 6 = 0\]
\[t_{1} + t_{2} = 1;\ \ t_{1} \cdot t_{2} = - 6\]
\[t_{1} = 3;\ \ \ t_{2} = - 2.\]
\[3^{x} = - 2\]
\[нет\ корней.\]
\[3^{x} = 3\]
\[3^{x} = 3^{1}\]
\[x = 1.\]
\[Ответ:x = 1.\]