\[\boxed{\mathbf{21.}}\]
\[\textbf{а)}\ 4^{x} + 2^{x} + x^{2} < x^{2} + 6\]
\[\left( 2^{2} \right)^{x} + 2^{x} - 6 < 0\]
\[\left( 2^{x} \right)^{2} + 2^{x} - 6 < 0\]
\[t = 2^{x}:\]
\[t^{2} + t - 6 = 0\]
\[t_{1} + t_{2} = - 1;\ \ t_{1} \cdot t_{2} = - 6\]
\[t_{1} = - 3;\ \ t_{2} = 2.\]
\[- 3 < t < 2\]
\[- 3 < 2^{x} < 2\]
\[2^{x} < 2\]
\[x < 1.\]
\[\textbf{б)}\ 27^{x} + 9^{x} > 3^{x} + 6 + 27^{x}\]
\[9^{x} - 3^{x} - 6 > 0\]
\[\left( 3^{2} \right)^{x} - 3^{x} - 6 > 0\]
\[\left( 3^{x} \right)^{2} - 3^{x} - 6 > 0\]
\[t = 3^{x}:\]
\[t^{2} - t - 6 = 0\]
\[t_{1} + t_{2} = 1;\ \ t_{1} \cdot t_{2} = - 6\]
\[t_{1} = 3;\ \ t_{2} = - 2.\]
\[t < - 2;\ \ t > 3.\]
\[3^{x} < - 2\]
\[нет\ решения.\]
\[3^{x} > 3\]
\[x > 1.\]