\[\boxed{\mathbf{86}.}\]
\[\textbf{а)}\ y^{'} = 4x^{3};\ \ y(0) = 1;\]
\[Общее\ решение:\]
\[y = \int_{}^{}{4x^{3}\text{dx}} = 4 \cdot \frac{x^{4}}{4} + C =\]
\[= x^{4} + C.\]
\[0^{4} + C = 1\]
\[C = 1.\]
\[Частное\ решение:\]
\[y = x^{4} + 1.\]
\[\textbf{б)}\ y^{'} = 5\sin x;\ \ y(0) = 0;\]
\[Общее\ решение:\]
\[y = \int_{}^{}{5\sin x\text{dx}} = - 5\cos x + C.\]
\[- 5\cos 0 + C = 0\]
\[- 5 \cdot 1 + C = 0\]
\[C = 5.\]
\[Частное\ решение:\]
\[y = - 5\cos x + 5.\]
\[\textbf{в)}\ y^{'} = 6\cos x;y(\pi) = 5;\]
\[Общее\ решение:\]
\[y = \int_{}^{}{6\cos x\text{dx}} = 6\sin x + C.\]
\[6\sin\pi + C = 5\]
\[6 \cdot 0 + C = 5\]
\[C = 5.\]
\[Частное\ решение:\]
\[y = 6\sin x + 5.\]
\[\textbf{г)}\ y^{'} = 7\sin x - 8\cos x;\ \ \]
\[y\left( \frac{\pi}{2} \right) = 0;\]
\[Общее\ решение:\]
\[y = \int_{}^{}{\left( 7\sin x - 8\cos x \right)\text{dx}} =\]
\[= 7\int_{}^{}{\sin x\text{dx}} - 8\int_{}^{}{\cos x\text{dx}} =\]
\[= - 7\cos x - 8\sin x + C.\]
\[- 7\cos\frac{\pi}{2} - 8\sin{x\frac{\pi}{2}} + C = 0\]
\[- 7 \cdot 0 - 8 \cdot 1 + C = 0\]
\[C = 8.\]
\[Частное\ решение:\]
\[y = - 7\cos x - 8\sin x + 8.\]
\[\textbf{д)}\ y^{''} = 66x;\ \ y(0) = 1;\]
\[y^{'}(0) = 3\]
\[Общее\ решение\ z^{'} = 66x:\]
\[z = \int_{}^{}{66xdx} = 66 \cdot \frac{x^{2}}{2} + C_{1} =\]
\[= 33x^{2} + C_{1}.\]
\[y^{'} = z = 33x^{2} + C_{1}.\]
\[Общее\ решение\ y^{'} = 33x^{2} + C_{1}:\]
\[y = \int_{}^{}{\left( 33x^{2} + C_{1} \right)\text{dx}} =\]
\[= \frac{33x^{3}}{3} + C_{1}x + C_{2} =\]
\[= 11x^{3} + C_{1}x + C_{2}.\]
\[Найдем\ C_{1}\ при\ y^{'}(0) = 3:\]
\[y^{'} = \left( 11x^{3} + C_{1}x + C_{2} \right)^{'} =\]
\[= 33x^{2} + C_{1};\]
\[y^{'}(0) = 33 \cdot 0^{2} + C_{1} = 3\]
\[C_{1} = 3.\]
\[Дифференциальное\ \]
\[уравнение:\]
\[y = 11x^{3} + 3x + C_{2}.\]
\[Найдем\ C_{2}\ при\ y(0) = 1:\]
\[y(0) = 11 \cdot 0 + 3 \cdot 0 + C_{2} = 1\]
\[C_{2} = 1.\]
\[Частное\ решение:\]
\[y = 11x^{3} + 3x + 1.\]
\[\textbf{е)}\ y^{''} = - 36x;\ \ y(0) = 0;\]
\[y^{'}(0) = 2\]
\[Общее\ решение\ z^{'} = - 36x:\]
\[z = \int_{}^{}{- 36xdx} =\]
\[= - 36 \cdot \frac{x^{2}}{2} + C_{1} = - 18x^{2} + C_{1}.\]
\[y^{'} = z = - 18x^{2} + C_{1}.\]
\[Общее\ решение\ y^{'} =\]
\[= - 18x^{2} + C_{1}:\]
\[y = \int_{}^{}{\left( - 18x^{2} + C_{1} \right)\text{dx}} =\]
\[= \frac{- 18x^{3}}{3} + C_{1}x + C_{2} =\]
\[= - 6x^{3} + C_{1}x + C_{2}.\]
\[Найдем\ C_{1}\ при\ y^{'}(0) = 2:\]
\[y^{'} = \left( - 6x^{3} + C_{1}x + C_{2} \right)^{'} =\]
\[= - 18x^{2} + C_{1};\]
\[y^{'}(0) = - 18 \cdot 0^{2} + C_{1} = 2\]
\[C_{1} = 2.\]
\[Дифференциальное\ \]
\[уравнение:\]
\[y = - 6x^{3} + 2x + C_{2}.\]
\[Найдем\ C_{2}\ при\ y(0) = 0:\]
\[y(0) = - 6 \cdot 0 + 2 \cdot 0 + C_{2} = 0\]
\[C_{2} = 0.\]
\[Частное\ решение:\]
\[y = - 6x^{3} + 2x.\]