Решебник по алгебре 11 класс Никольский Параграф 6. Первообразная и интеграл Задание 77

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 77

\[\boxed{\mathbf{77}.}\]

\[V = \pi\int_{a}^{b}{\left( f(x) \right)^{2}\text{dx}}.\]

\[1)\ При\ вращении\ графика\ \]

\[функции\ f(x) = r;0 \leq x \leq h\ в\ \]

\[прямоугольной\ системе\ \]

\[координат\ вокруг\ оси\ x\ \]

\[получим\ цилиндр\ высотой\ h\ \]

\[и\ радиусом\ основания\ \text{r.}\]

\[V = \pi\int_{0}^{h}{(r)^{2}\text{dx}} = \pi r^{2}\int_{0}^{h}{1dx} =\]

\[= \left. \ \pi r^{2} \cdot x \right|_{0}^{h} = \pi r^{2}(h - 0) =\]

\[= \pi r^{2}\text{h.}\]

\[2)\ При\ вращении\ графика\ \]

\[функции\ f(x) = \frac{r}{h}x;0 \leq x \leq h;\]

\[в\ прямоугольной\ системе\ \]

\[координат\ вокруг\ оси\ x\ \]

\[получим\ конус\ высотой\ \text{h\ }и\ \]

\[радиусом\ основания\ \text{r.}\]

\[V = \pi\int_{0}^{h}{\left( \frac{r}{h}x \right)^{2}\text{dx}} =\]

\[= \pi\int_{0}^{h}{\frac{r^{2}}{h^{2}}x^{2}\text{dx}} = \frac{\pi r^{2}}{h^{2}}\int_{0}^{h}{x^{2}\text{dx}} =\]

\[= \left. \ \frac{\pi r^{2}}{h^{2}} \cdot \frac{x^{3}}{3} \right|_{0}^{h} = \frac{\pi r^{2}}{h^{2}}\left( \frac{h^{3}}{3} - 0 \right) =\]

\[= \frac{\pi r^{2}}{h^{2}} \cdot \frac{h^{3}}{3} = \frac{1}{3}\pi r^{2}\text{h.}\]

Скачать ответ
Есть ошибка? Сообщи нам!