\[\boxed{\mathbf{70}.}\]
\[\textbf{а)}\ y = x^{2} - \pi x;\]
\[y = \sin x;\]
\[\sin x = x^{2} - \pi x\]
\[x_{1} = 0;\ \ x_{2} = \pi;\]
\[y(0) = 0;\]
\[y(\pi) = 0.\]
\[x \in (0;\ \pi):\]
\[S = \int_{0}^{\pi}{\left( \sin x - \left( x^{2} - \pi x \right) \right)\text{dx}} =\]
\[= \int_{0}^{\pi}{\left( \sin x - x^{2} + \pi x \right)\text{dx}} =\]
\[= \left. \ - \cos x - \frac{x^{3}}{3} + \frac{x\pi^{2}}{2} \right|_{0}^{\pi} =\]
\[= 1 + \frac{\pi^{3}}{6} + 1 = \frac{\pi^{3}}{6} + 2\ (кв.\ ед.).\]
\[Ответ:\ \frac{\pi^{3}}{6} + 2\ (кв.\ ед.).\]
\[\textbf{б)}\ y = \sin x;\ y = \cos x;\]
\[x = \frac{\pi}{4};\ \ x = \frac{5\pi}{4};\]
\[S = \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}}{\sin x\text{dx}} - \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}}{\cos x\text{dx}} =\]
\[= \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}}{\left( \sin x - \cos x \right)\text{dx\ }} =\]
\[= \left. \ - \cos x - \sin x \right|_{\frac{\pi}{4}}^{\frac{5\pi}{4}} =\]
\[= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} =\]
\[= 2\sqrt{2}\ (кв.\ ед.).\]
\[Ответ:2\sqrt{2}\ кв.\ ед.\]